a2 United States Patent

Fillingim et al.

US009116823B2

US 9,116,823 B2
Aug. 25,2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)
(72)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

SYSTEMS AND METHODS FOR ADAPTIVE
ERROR-CORRECTION CODING

Applicant: Fusion-io, Inc., Salt Lake City, UT (US)

Inventors: Jeremy Fillingim, Salt Lake City, UT
(US); David Flynn, Sandy, UT (US);
John Strasser, Syracuse, UT (US); Bill
Inskeep, West Valley City, UT (US)

Assignee: Intelligent Intellectual Property
Holdings 2 LL.C (DE)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 5 days.

Appl. No.: 13/830,652

Filed: Mar. 14,2013

Prior Publication Data
US 2013/0205183 Al Aug. 8, 2013

Related U.S. Application Data

Continuation-in-part of application No. 13/784,705,
filed on Mar. 4, 2013, which is a continuation-in-part
of'application No. 13/296,834, filed on Nov. 15, 2011,
which is a continuation-in-part of application No.

(Continued)
Int. Cl.
G11C 29/00 (2006.01)
GO6F 11/10 (2006.01)
(Continued)
U.S. CL

CPC GO6F 11/10(2013.01); GO6F 9/52 (2013.01);
GO6F 11/108 (2013.01); GO6F 11/1044

(2013.01); GO6F 12/0253 (2013.01); HO4L

12/46 (2013.01); HO4L 12/4625 (2013.01);

(Continued)

600

(58) Field of Classification Search

CPC GOGF 11/1068; GO6F 11/1072; GOGF
11/1008; GOG6F 11/1076; G11C 29/00
USPC i 714/773

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5/1992 Zook
9/1992 Yokono et al.

(Continued)

5,111,463 A
5,151,905 A

FOREIGN PATENT DOCUMENTS

EP
EP

0747822
1100001

12/1996
5/2001

(Continued)
OTHER PUBLICATIONS

Application No. 200780051027.1, 2380.2.2CN, Office Action, Apr.
23, 2013.

(Continued)

Primary Examiner — Albert Decady
Assistant Examiner — Enam Ahmed
(74) Attorney, Agent, or Firm — Kunzler Law Group, PC

(57) ABSTRACT

A storage module is configured to store data segments, such
as error-correcting code (ECC) codewords, within an array
comprising a plurality of columns. The ECC codewords may
comprise ECC codeword symbols. The ECC symbols of a
data segment may be arranged in a horizontal arrangement, a
vertical arrangement, a hybrid channel arrangement, and/or
vertical stripe arrangement within the array. The individual
ECC symbols may be stored within respective columns of the
array (e.g., may not cross column boundaries). Data of an
unavailable ECC symbol may be reconstructed by use of
other ECC symbols stored on other columns of the array.

18 Claims, 28 Drawing Sheets

Data Packets 610
Gampdsing 5128 of
Data 612 and 98

e 4

8108

\ Commzr

Write Madule 240

Dta of Packet 6704

(6708 &70A]

PR T

1650A

]

”

o3
ORI}
1A T

Hes

55 76 9101 12131415 1517,18 19 20 21 2

118 i

Rt

5

US 9,116,823 B2

Page 2

Related U.S. Application Data

11/952,101, filed on Dec. 6, 2007, now Pat. No. 8,402,
201.

(60) Provisional application No. 60/873,111, filed on Dec.
6, 2006, provisional application No. 60/974,470, filed
on Sep. 22, 2007, provisional application No. 61/606,
253, filed on Mar. 2, 2012, provisional application No.
61/606,755, filed on Mar. 5, 2012.

(51) Int.CL
GOGF 12/02 (2006.01)
GOGF 9/52 (2006.01)
HO4L 12/46 (2006.01)
HO4L 12/64 (2006.01)
HO4L 29/08 (2006.01)
(52) US.CL

CPC HO4L 12/6418 (2013.01); GOGF 2211/109
(2013.01); GO6F 2212/2022 (2013.01); HO4L
67/1097 (2013.01)

(56) References Cited
U.S. PATENT DOCUMENTS

6,128,695 10/2000 Estakhri et al.
6,141,249 10/2000 Estakhri et al.
6,145,051 11/2000 Estakhri et al.
6,170,039 Bl 1/2001 Kishida
6,170,047 Bl 1/2001 Dye
6,172,906 Bl 1/2001 Estakhri et al.
6,173,381 Bl 1/2001 Dye
6,185,654 Bl 2/2001 Van Doren
6,223,308 Bl 4/2001 Estakhri et al.
6,230,234 Bl 5/2001 Estakhri et al.

5,261,068 A 11/1993 Gaskins et al.
5,291,496 A 3/1994 Andaleon et al.
5313475 A 5/1994 Cromer et al.
5,323,489 A 6/1994 Bird
5,325,509 A 6/1994 Lautzenheiser
5,379,304 A * 1/1995 Delletal.coceevninn. 714/773
5,388,083 A 2/1995 Assar et al.
5,404,485 A 4/1995 Ban
5,438,671 A 8/1995 Miles
5,479,638 A 12/1995 Assar et al.
5,485,595 A 1/1996 Assar et al.
5,504,882 A 4/1996 Chai
5,544,356 A 8/1996 Robinson et al.
5,551,003 A 8/1996 Mattson et al.
5,559,988 A 9/1996 Durante et al.
5,592,641 A 1/1997 Fandrich et al.
5,594,883 A 1/1997 Pricer
5,603,001 A 2/1997 Sukegawa et al.
5,664,096 A 9/1997 Ichinomiya et al.
5,701,434 A 12/1997 Nakagawa
5,734,861 A 3/1998 Cohn et al.
5,745,671 A 4/1998 Hodges
5,754,563 A 5/1998 White
5,758,118 A 5/1998 Choy etal.
5,822,759 A 10/1998 Treynor
5,845,313 A 12/1998 Estakhri et al.
5,845,329 A 12/1998 Onishi et al.
5,893,138 A 4/1999 Judd et al.
5,907,856 A 5/1999 Estakhri et al.
5,924,113 A 7/1999 Estakhri et al.
5,930,815 A 7/1999 Estakhri et al.
5,960,462 A 9/1999 Solomon et al.
5,961,660 A 10/1999 Capps, Jr. et al.
5,969,986 A 10/1999 Wong et al.
6,000,006 A 12/1999 Bruce et al.
6,000,019 A 12/1999 Dykstal et al.
6,014,724 A 1/2000 Jenett
6,061,511 A 5/2000 Marantz et al.
6,078,520 A 6/2000 Tobita et al.
6,105,076 A 8/2000 Beardsley et al.

A

A

A

6,240,040
6,330,688
6,353,878
6,356,986
6,370,631
6,374,336
6,385,688
6,385,710
6,393,513
6,404,647
6,404,676
6,412,080
6,418,478
6,418,509
6,424,872
6,446,188
6,477,617
6,519,185
6,523,102
6,535,869
6,564,285
6,567,307
6,571,312
6,587,915
6,601,211
6,604,168
6,625,685
6,671,757
6,675,318
6,675,349
6,697,076
6,710,901
6,715,046
6,725,321
6,728,851
6,742,078
6,751,155
6,754,774
6,754,800
6,757,800
6,760,805
6,763,424
6,775,185
6,779,088
6,785,785
6,795,890
6,801,979
6,839,819
6,839,826
6,845,428
6,871,257
6,877,076
6,880,049
6,883,068
6,883,079
6,910,170
6,912,537
6,912,598
6,912,618
6,928,505
6,931,509
6,938,133
6,968,421
6,977,599
6,978,342
6,996,676
7,000,063
7,010,652
7,043,599
7,050,337
7,058,769
7,069,380
7,076,723
7,089,391
7,096,321
7,111,140
7,130,960
7,139,864
7,149,947

Bl
Bl

Bl

Bl

Bl

5/2001
12/2001
3/2002
3/2002
4/2002
4/2002
5/2002
5/2002
5/2002
6/2002
6/2002
6/2002
7/2002
7/2002
7/2002
9/2002
11/2002
2/2003
2/2003
3/2003
5/2003
5/2003
5/2003
7/2003
7/2003
8/2003
9/2003
12/2003
1/2004
1/2004
2/2004
3/2004
3/2004
4/2004
4/2004
5/2004
6/2004
6/2004
6/2004
6/2004
7/2004
7/2004
8/2004
8/2004
8/2004
9/2004
10/2004
1/2005
1/2005
1/2005
3/2005
4/2005
4/2005
4/2005
4/2005
6/2005
6/2005
6/2005
6/2005
8/2005
8/2005
8/2005
11/2005
12/2005
12/2005
2/2006
2/2006
3/2006
5/2006
5/2006
6/2006
6/2006
7/2006
8/2006
8/2006
9/2006
10/2006
11/2006
12/2006

Akaogi et al.
Brown
Dunham
Solomon et al.
Dye

Peters et al.
Mills
Goldman et al.
Estakhri et al.
Minne

Kihara et al.
Fleming et al.
Ignatius et al.
Yanai et al.
Glanzer et al.
Henderson et al.
Golding
Harari et al.
Dye et al.
Housel, IIT
Mills

Estakhri

Sugai et al.
Kim

Norman
Ogawa

Cho et al.
Multer et al.
Lee

Chen

Trivedi et al.
Pastor
Shoham et al.
Sinclair et al.
Estakhri et al.
Chien et al.
Gorobets
Gruner et al.
Wong et al.
Estakhri et al.
Lasser

Conley
Fujisawa et al.
Benveniste et al.
Piccirillo et al.
Sugai et al.
Estakhri et al.
Martin
Cernea
Kedem
Conley et al.
Cho et al.
Gruner et al.
Tsirigotis et al.
Priborsky
Choi et al.
Selkirk et al.
Bedarida et al.
Estakhri et al.
Klingman
Lloyd-Jones
Johnson et al.
Conley
Widmer
Estakhri et al.
Megiddo
Friedman et al.
Piccirillo et al.
Ware et al.
Iwase et al.
Danilak
Ogawa et al.
Saliba

Geiger et al.
Modha
Estakhri et al.
Kano

Bennett et al.
Maclellan et al.

US 9,116,823 B2

Page 3
(56) References Cited 2005/0149819 Al 7/2005 Hwang
2005/0193166 Al 9/2005 Johnson et al.
U.S. PATENT DOCUMENTS 2005/0204187 Al 9/2005 Leeetal.
2005/0216653 Al 9/2005 Aasheim et al.
7,162,571 B2 1/2007 Kilian et al. 2005/0223154 Al 10/2005 Uemura
7,167,953 B2 1/2007 Megiddo et al. 2005/0229090 A1 10/2005 Shen et al.
7,173,852 B2 2/2007 Gorobets 2005/0240713 Al 10/2005 Wu
7,178,081 B2 2/2007 Lee et al. 2005/0246510 A1 11/2005 Retnamma et al.
7,181,572 B2 2/2007 Walmsley 2006/0004955 Al 1/2006 Ware et al.
7,194,577 B2 3/2007 Johnson et al. 2006/0059326 Al 3/2006 Aasheim et al.
7,215,580 B2 5/2007 Gorobets 2006/0064556 Al 3/2006 Aasheim et al.
7,219,197 B2 5/2007 Hatakeyama 2006/0075057 Al 4/2006 Goldea et al.
7.219,238 B2 5/2007 Saito et al. 2006/0107097 Al 5/2006 Zohar et al.
7.237.141 B2 6/2007 Fredin 2006/0136687 Al 6/2006 Conley
7,243,203 B2 7/2007 Scheuerlein 2006/0136779 Al 6/2006 Leeetal.
7,246,179 B2 7/2007 Camara et al. 2006/0152981 Al 7/2006 Ryu
7,248,691 Bl 7/2007 Pandit et al. 2006/0248387 Al 11/2006 Nicholson et al.
7,287,109 B2 10/2007 Barth et al. 2006/0271725 Al 112006 Wong
7,305,520 B2 12/2007 Voigt et al. 2007/0005928 Al 1/2007 Trika et al.
7328307 B2 2/2008 Hoogterp 2007/0016699 Al 1/2007 Minami
7,337,201 Bl 2/2008 Yellin et al. 2007/0028035 Al 2/2007 Nishihara
7,340,566 B2 3/2008 Voth 2007/0030734 Al 2/2007 Sinclair
7.340,645 Bl 3/2008 Martin et al. 2007/0050571 Al 3/2007 Nakamura
7,366,868 B2 4/2008 Reuter et al. 2007/0058610 Al 3/2007 Brandstatter
7,376,034 B2 5/2008 Torabi et al. 2007/0074092 Al 3/2007 Dammann et al.
7,389,465 B2 6/2008 Radke et al. 2007/0086260 Al 4/2007 Sinclair
7,424,593 B2 9/2008 Estakhri et al. 2007/0113150 Al 5/2007 Resnick
7,441,000 B2 10/2008 FEstakhri et al. 2007/0118713 Al 5/2007 Guterman
7,450,420 B2 11/2008 Sinclair et al. 2007/0143566 Al 6/2007 Gorobets
7,451,346 B2 11/2008 Katsuragi 2007/0162830 Al 7/2007 Stek et al.
7,454,555 B2 11/2008 Ware et al. 2007/0168564 Al 7/2007 Conley et al.
7,480,766 B2 1/2009 Gorobets 2007/0168698 Al 7/2007 Coulson et al.
7,487,320 B2 2/2009 Bansal et al. 2007/0174574 Al 7/2007 Kano
7,523,249 Bl 4/2009 Estakhri et al. 2007/0198770 Al 8/2007 Horii et al.
7,549,013 B2 6/2009 Estakhri et al. 2007/0204100 Al 8/2007 Shin et al.
7,552,271 B2 6/2009 Sinclair et al. 2007/0204197 Al 8/2007 Yokokawa
7,565,569 B2 7/2009 Zohar et al. 2007/0204199 Al 8/2007 Chung et al.
7,631,138 B2 12/2009 Gonzalez et al. 2007/0220396 Al 9/2007 Jacksonc...... 714/758
7,644,239 B2 1/2010 Ergan etal. 2007/0233937 Al 10/2007 Coulson et al.
7,652,922 B2 12010 Kim 2007/0245217 Al 10/2007 Valle
7,725,628 Bl 5/2010 Phan et al. 2007/0268754 Al 11/2007 Leeetal.
7,797,479 B2 9/2010 Trika et al. 2007/0271468 Al 11/2007 McKenney et al.
7,856,528 Bl 12/2010 Frost et al. 2007/0271572 Al 112007 Gupta et al.
7.873.803 B2 1/2011 Cheng 2007/0274150 Al 11/2007 Gorobets
7,944,762 B2 5/2011 Gorobets 2007/0300008 Al 12/2007 Rogers et al.
8,296,628 B2* 10/2012 Madanccc.c..... 714/773 2008/0022187 Al 12008 Bains
8,423,701 B2 4/2013 Perroni et al. 2008/0034259 Al 2/2008 Ko
8,595,573 B2* 11/2013 Shalvietal.c......... 714/718 2008/0082736 Al 4/2008 Chow et al.
2002/0053000 Al 5/2002 Selkirk et al. 2008/0098083 Al 4/2008 Shergill
2002/0057798 Al 5/2002 Zhang 2008/0098159 Al 4/2008 Song et al.
2002/0069317 Al 6/2002 Chow et al. 2008/0109647 Al 5/2008 Gavens et al.
2002/0069318 Al 6/2002 Chow et al. 2008/0120303 Al 5/2008 Selkirk et al.
2002/0194451 Al 12/2002 Mukaida et al. 2008/0141043 Al 6/2008 Flynn
2003/0023911 Al* 1/2003 Davisetal. ..ccoocoovrrrrrrns 714/723 2008/0144826 Al ~ 6/2008 Chang
2003/0028704 Al 2/2003 Mukaida et al. 2008/0270714 Al* 10/2008 Van Den Bosch 711/157
2003/0061296 Al 3/2003 Craddock et al. 2009/0043952 A1 2/2009 Estakhri et al.
2003/0093741 A1 5/2003 Argon etal. 2009/0083485 Al 3/2009 Cheng
2003/0163630 Al 8/2003 Aasheim et al. 2009/0204750 Al 82009 Estakhri etal.
2003/0163633 Al 8/2003 Aasheim 2009/0235017 Al 9/2009 Estakhri et al.
2003/0163663 Al 8/2003 Aasheim et al. 2009/0313453 Al 12/2009 Stefanus et al.
2003/0165076 Al 9/2003 Gorobets et al. 2010/0091535 Al 4/2010 Sommer et al.
2003/0198084 Al 10/2003 Fujisawa et al. 2011/0182119 Al 7/2011 Strasser et al.
2004/0044705 Al 3/2004 Stager 2011/0240749 Al* 10/2011 Naddorcccocevvene 235/494
2004/0064647 Al 4/2004 DeWhitt et al.
2004/0088514 Al 5/2004 Bullen FOREIGN PATENT DOCUMENTS
2004/0186946 Al 9/2004 Lee
2004/0225946 Al* 11/2004 Hashimoto etal. 714/764 EP 1607868 12/2005
2004/0268359 Al 12/2004 Hanes GB 0123416.0 9/2001
2005/0002263 Al 1/2005 Iwase et al. JP 2004086295 3/2004
2005/0015539 Al 1/2005 Horii et al. WO 2005010773 2/2005
2005/0027951 Al 2/2005 Piccirillo et al. WO 2008070796 6/2008
2005/0055495 Al 3/2005 Vihmalo
2005/0055497 Al 3/2005 Estakhri et al. OTHER PUBLICATIONS
2005/0132148 Al 6/2005 Arimilli et al.
2005/0132259 Al 6/2005 Emmot et al. U.S. Appl. No. 11/952,091, Office Action, Feb. 7, 2012.
2005/0141312 Al 6/2005 Sinclair et al. U.S. Appl. No. 11/952,091, Notice of Allowance, Jun. 28, 2012.
2005/0141313 Al 6/2005 Gorobets Application No. 200780050974.9, Office Action, Jul. 27, 2011.
2005/0144361 Al 6/2005 Gonzalez et al. Application No. 200780050974.9, Office Action, May 23, 2012.
2005/0149618 Al 7/2005 Cheng Application No. PCT/US2007/086683, International Preliminary

US 9,116,823 B2
Page 4

(56) References Cited
OTHER PUBLICATIONS

Report on Patentability, Nov. 5, 2009.

Application No. PCT/US2007/086683, International Search Report
and Written Opinion, Oct. 26, 2009.

U.S. Appl. No. 11/952,095, Office Action, Oct. 29, 2010.

U.S. Appl. No. 11/952,095, Office Action, Jun. 8, 2011.

U.S. Appl. No. 11/952,095, Office Action, Feb. 14, 2012.

U.S. Appl. No. 11/952,095, Office Action, Sep. 4, 2013.
Application No. 200780051027.1, Office Action, Feb. 1, 2011.
Application No. 200780051027.1, Office Action, Feb. 16, 2012.
Application No. PCT/US2007/086686, International Search Report
and Written Opinion, Apr. 28, 2008.

Application No. PCT/US2007/086686, International Preliminary
Report on Patentability, Dec. 16, 2008.

U.S. Appl. No. 11/952,101, Office Action, Jan. 6, 2011.

U.S. Appl. No. 11/952,101, Office Action, Dec. 22, 2011.
Application No. 200780050969.8, Office Action, Nov. 11, 2010.
Application No. 20078005096.8, Office Action. Jul. 6, 2011.
Application No. 200780050969.8, Office Action, Nov. 7. 2011.
Application No. 07865335.9, Office Action, Nov. 18, 2010.
Application No. PCT/US2007/086688, International Search Report
and Written Opinion, Apr. 28, 2008.

Application No. PCT/US2007/086688, International Preliminary
Report on Patentabirty, Mar. 16, 2009.

“Datadirect Storage Systems Selected for NCS A Cluster”, HPCWire,
Sep. 4, 2010 pp. 2, hitp//www.hpcwire.com/hpcwire/
hpewireWWW/03/0815/105731 html.

“Introducing Box Hill’s Fibre Box”, Fibre Channel News, Jan. 16,
1997, p. 5, http://hsi.web.cern.ch/HSI/fcs/news/jandec97 htm.
“Hynix 48-GB Flash MCP”, Slashdot, Sep. 6, 2007, pp. 3, http://
hardware.slashdot.org/article.pl?sid=07/09/06/1462 18& from=rss.
“Am29”D1.322D/323D/324D, Spansion, Oct. 7, 2004, pp. 57 Data
Sheet XP-002476181, Publication No. 21534, Revision #, Amend-
ment #7.

Ari, Ismail, “Performance Boosting and Workload Isolation in Stor-
age Area Networks with SANCache”, Proceedings of the 23rd IEEE/
14th NASA Goddard Conference on Mass Storage Systems and
Technologies, May 2006, pp. 11, College Park, Maryland, US.
Dan, Raz, “Implementing MLC NAND Flash for Cost-Effective,
High-Capacity Memory”, M-Systems White Paper, Sep. 2003, pp.
13, 92-SR-014-02-8L, Rev. 1.1.

“Ecc Algorithm”, Samsung Electronics, Mar. 2005, pp. 8.
Kawaguchi, Atsuo, “A Flash-Memory Based File Systern”, Hitachi,
Ltd., 1995, pp. 10.

Morgenstern, David, “Is There a Flash Memory RAID in Your
Future?”, Ziff Davis Enterprise Holdings, Inc., Nov. 8, 2006, pp. 4,
http://www.eweek.com—eWeek.

“File System Primer”, CoolSolutionsWiki, Jul. 17, 2006, pp. 5, http://
wiki.novell.com/index.php/File_ System_ Primer.

Application No. PCT/US2009/039572, International Search Report
and Written Opinion, Jul. 30, 2009.

Application No. PCT/US2009/039572, International Preliminary
Report on Patentability, Oct. 14, 2010.

“Pivot3 RAIGE Storage Cluster”, Pivot3 White Paper, Jun. 2007, pp.
17, Technology Overview.

Plank, James S., “A Tutorial on Reed-Solomon Coding for Fault-
Tolerance in RAID-like Systems”, University of Tennessee, Sep.
1997, pp. 19, Technical Report CS-96-332, http://www.cs.utk.edu/
~plank/papers/CS-03-504 html.

Van Hensbergen, Eric, “Dynamic Policy Disk Caching for Storage
Networking”, IBM Research Report, Nov. 28, 2006, pp. 13,
RC24123.

“S2A9550 Overview”, DataDirect Networks Whitepaper, 2007, pp.
17, Chatsworth, California, US.

Wu, Michael, “eNVy: A Non-Volatile, Main Memory Storage Sys-
tem”, Association of Computing Machinery, 1994, pp. 12, ASPLOS
Vo. 10/94, San Jose, California, US.

U.S. Appl. No. 12/098,427, Office Action, Aug. S, 2011.

“Method for Fault Tolerance in nonvolatile Storage”,
PriorArtDatabase, Feb. 3, 2005, pp. 6, Technical Disclosure, http://
www.ip.com/pubview/PCOM000042269D.

“BiTMICRO Introduces E-Disk PMC Flash Disk Module”,
BiTMICRO, May 18, 2004, pp. 2, Military & Aerospace Electronics
East 2004, http://www.bitmicor.com/press_news_ releases__
20040518__prt.php.

“High Speed, Elevated Board Stacking”, Samtec, 2007, p. 1.
Benjauthrit, Boonsieng, “An Overview of Error Control Codes for
Data Storage”, DATATAPE Incorporated, Apr. 1996, pp. 7, 1996
International NonVolatile Memory Technology Conference.
“ASPMC-660”, Asine, downloaded Nov. 18, 2009, pp. 3, http://
www.asinegroup.com/products/aspmc660.html.

Cardarilli, G. C., “Design of Fault-tolerant Solid State Mass
Memory”, Consortium ULISSE, Nov. 1999, pp. 9, Italy.
Makulowich, John, “Strategies, Players and Emerging Markets”,
Washington Technology, Jun. 26, 1997, pp. 6, http://
washingtontechnology.com/Articles/1997/06/26/Strategies-Play-
ers-and-Emeriging-Ma

U.S. Appl. No. 12/098,434, Office Action, Oct. 29, 2010.
Application No. PCT/US2009/039570, InternationalSearch Report
and Written Opinion, Jul. 8, 2009.

Application No. PCT/US2009/039570, International Preliminary
Report cin Patentability, Oct. 21, 2010.

Woodhouse, David, “JFFS: The Journalling Flash File System”, Red
Hat, Inc., Jul. 1, 2001, pp. 12.

Rosenblum, Mendel, The Design and implementation of a Log-
structured File System, 1992, pp. 101.

Kleiman, S. R., “Vnodes: An Architecture for Multiple File System
Types in Sun UNIX”, Sun Microsystems, Jan. 1, 1986, pp. 10.
Leventhal, Adam, “Flash Storage Memory”, Communications of the
ACM, Jul. 2008, pp. 5, vol. 51, No. 7.

Mesnier, Mike, “Object-Based Storage”, IEEE Comminications
Magazine, Aug. 2003, pp. 7, Storage Area Networking, 0163-6804/
04.

U.S. Appl. No. 12/981,394, Notice of Allowance, Oct. 12, 2011.
“SCSI Object-Based Storage Device Commands”, Seagate Technol-
ogy, Jul. 30, 2004, pp. 187, Project T10/1355-D Working Draft,
Reference No. ISO/IEC 14776-391:200x ANST INCITS.:200x.
“Introduction to Samsung’s Linux Flash File System—RFS”,
Samsung Electronics, Nov. 2006, pp. 6, Application Note, Version
1.0.

“NAND Flash 101: An Introduction to NAND Flash and How to
Design It in to Your Next Product”, Micron, Nov. 2006, pp. 28,
Technical Note, TN-29-19: NAND Flash 101.

U.S. Appl. No. 12/098,427, Office Action, Jun. 19, 2012.

U.S. Appl. No. 12/273,532, Notice of Allowance, Apr. 6, 2011.
U.S. Appl. No. 12/273,532, Notice of Allowance, Jul. 29, 2011.
U.S. Appl. No. 13/730,602, Office Action, Jan. 15, 2015.

U.S. Appl. No. 13/456,119, Notice of Allowance, Feb. 20, 2015.
U.S. Appl. No. 13/784,705, Office Action, May 22, 2015.

U.S. Appl. No. 13/296,834, filed Jun. 18, 2015.

* cited by examiner

U.S. Patent

Aug. 25, 2015 Sheet 1 of 28 US 9,116,823 B2

Computing Device 101
103 106 .
Storage Client(s)
— 104
105
T Tm TN
i Storage Module 130
Storage Interface
131
; ; Storage
Logical-to- Physical Request
Translation Layer Metadatal@ﬁ Buffer
132 136 18
Adaptive Data Recovery
! Log
' s Groomer Storage 170
: torage .,
: 137 138 Profiling
- 160 172
Adaptive Storage 11
113 —
A
~\127
4
116A 116B 116C 116Y
110 N T s —
| ! ;
_
117{[S S B S U S
:) ; 7]
' B
i A
N - y
145

U.S. Patent Aug. 25, 2015 Sheet 2 of 28 US 9,116,823 B2

Storage Client(s) 104

pe=m=- asssmssessccee cesemancee DR R Lo

]
' §
' (]
¢ [
' i
' L
' []
E Storage Interface 131 :

[}
' (]
' ¢
' . . . St Metadata 134 '
: Logical-to-Physical Translation Layer crage eladata 12 !
] g y !
¢ 132 - '
‘ U ‘
’ :
']
: Log Adaptive '
[]
H Storage Grciggler Storage Profiling Data I??govery s
' 137 == 160 12 ;
' (]
' []
: :
! Adaptive Storage Module '
' (]
‘ 113 Request Module 231 114 ;
[] . []
E | X :
' Packet Depacket '
: \ 242 239 Read :
' Write T T Module ‘
' MOdUIeﬂ Whiten Dewhiten 241 '
' 240 :
' 244 243 '
: | ['
' ECC Write ECC Read '
' 248 245 ¢
] l |]
' [}
: Adaptive Write Adaptive Read ‘
‘ 248 247 '
L} l I 4
' L]
: Write Buffer Read Buffer '
' 250 251 H

L]
' L}
H &
‘ :
' v | :
' Log Storage Bank Controller !
: 137 252 ;
' T¥/127 :
H 1
H 1
\ 1
hcwwnenemmereenacaanan enenmnevcsecsePousvnmanoccnnannane commmsve wosenmmel

1110

; [W S U —
§ 119A 119B 119N

U.S. Patent Aug. 25, 2015 Sheet 3 of 28 US 9,116,823 B2

340

Packet Data Segment 312

FIG. 3

400 ECC
Packets\‘ \\ Codewords™ 4

r 314A

o P N

(e8]
—
(o]

31 5./

312A-0

3124 42084
310A<

420Cj

DI S U R

148 s200{ | S 3148

312B-0

R

312B

ECC Encoding 420Ef

(@3]

12B-1

2108, 4207 {

%]
N
N
w
|38

420Gj

L 420H{

420X

(€8]
—
N
®
(98]

310N J
420Y

4202

U.S. Patent Aug. 25, 2015 Sheet 4 of 28 US 9,116,823 B2

i 530 ;
117
) BICE
§ J\l_QJ\‘I23456789‘|0‘|112131415161718192021222324V-§

-
N
o
-

210

115 peomp—————————————————— g |
| Logical !

i Storage e o
i Division v
540 o

N

”\Q\\' ’

9

T
:Q}\\:\}«\ 5
s,
1\’\

o

, h S
A, \\\‘«1\\
2 NN
e AN

,_ 1:3@”\3 o
5NN
P

b

2 542 545
Logical

Page 544

US 9,116,823 B2

Sheet 5 of 28

Aug. 25,2015

U.S. Patent

NLEG

oy
N
N6L1L o611 a6l V6Ll
NSL) o611 sl VSLL
e o e e o e
b , bl |
Y ¥
~
7 . a2vs | | vevs
b 1 obe
¥ .4 y H A <_‘mm\
| §
o1z~ “dz1
HEN
L1 |
¢8¢ IET
Jojj0u00) yueg abeioig Bo
r— e
we ove ¢l

INPOWN pesy

SINPON B

abelolg anndepy

U.S. Patent Aug. 25, 2015 Sheet 6 of 28 US 9,116,823 B2

Program
[LP_0 Array 115A, Bank 119A]._.-243A
,,, Program
[LP_0Aray 1158, Bank 1198 |.. ...2*438
.. ; Program
~» | LP_O0Array 115C, Bank 119C |. . 243C
g : Program
; LP_0O Array 115D, Bank 119N] 243N

FIG. 5D

EBG_O, LP_0 Arrays 115A-N of Banks 119A-N 1\(540A
EBG_0, LP_1 Arrays 115A-N of Banks 119A-N
EBG_0, LP_2 Arrays 115A-N of Banks 119A-N

EBG_O, LP_N Arrays 115A-N of Banks 119A-N i

~
EBG_1, LP_0 Arrays 115A-N of Banks 119A-N 1\{ 540B
EBG_1, LP_1 Arrays 115A-N of Banks 119A-N
EBG_1, LP_2 Arrays 115A-N of Banks 119A-N

[EBG_1, LP_N Arrays 115A-N of Banks 119A-N |
EBG_2, LP_0 Arrays 115A-N of Banks 119A-N l\y 540C
EBG_2, LP_1 Arrays 115A-N of Banks 119A-N

EBG_2, LP_2 Arrays 115A-N of Banks 119A-N

| EBG_2, LP_N Arrays 115A-N of Banks 119A-N |

EBG_N, LP_0 Arrays 115A-N of Banks 119A-N 540N
EBG_N, LP_1 Arrays 115A-N of Banks 119A-N
EBG_N, LP_2 Arrays 115A-N of Banks 119A-N

| EBG_N, LP_N Arrays 115A-N of Banks 119A-N |

FIG. 5E

U.S. Patent Aug. 25, 2015 Sheet 7 of 28 US 9,116,823 B2

600
1
Data Packets 610 Write Module 240 240B ECC Codewords
Comprising 512B of T 620 Comprising 224B
Data 612, and 8B of Packet Data 610A,
metadata 614 610A and 16B of EC(
[Da6i2A [6144) Adapg‘fSW”te
Data Stream [Packet | (| T Eec i B 8 8
o5 242 [8B | 248 g8 | Wi !
3
4
Data of Packet 810A 5
Va N
[6708 B10A[ECC || B10A _[Ecc][B10A [Eecc] ‘73
623 622 621 g
70410
24B Data
Data Row 667: Parity
24B Data 837
1B Parity \/
Adaptive Storage Read Module L
113 241 -t Bank Controlier
—_ S— 252
1277 v
Pyt
621{ 997
B10A 622{
623 | 1650A
636
6108 L
» |
538
1
3508
L0 123 456 7 8 910111213 14 15 16 17,18 119 20 21 22 23 24,
11647 o - T 118Y
1168 . 118 116X
115

FIG. 6A

U.S. Patent Aug. 25, 2015 Sheet 8 of 28 US 9,116,823 B2
601
Adaptive Storage
113
210
667,
S s s e e S Tl
Do | D1 | Do | D3| Ds|Dsi| Ds D1g| Dag| Doy
D24 | Das| Dag| D27| Dag D29§ Do Da43| Das| Dys
Dss | Dag| Dso| Ds1| Ds2 D53§ Dss Ds7| Des| Deg
6214 |D72| D3| Dy4| D75 Dsg D77§ Drs Dg1| Dgz| Dg3
D192|D193{D 194/ D195| D196 D197§ D1gs D211D212|D213|D214 D2151; ;
D216|D217 D21/ D214 DzzoDzsz Da2o D235D236|D237|D23s D239f o
o 1 2 3 4 56 1920212223;g;gzpar'ty
116A% e 116Y
1168 118 ox
AN v J
115

U.S. Patent Aug. 25, 2015 Sheet 9 of 28 US 9,116,823 B2

602
Data Packets 610 240B ECC
Comprising 5128 of Write Module 240 Codewords 620
Data 612, and 8B 510A Comprising 224B of
metadata 614 A Packet Data 610A, | Adaptive Write
[Data 612A [614A) and 168 of ECC 248
1672 623 (339
Data Stream[™ packet ECC Write s
e > > i
8B 242 8B 246 8B =i
Data of Paiket 610A -
/ N -
[610B 610A[ECC || B610A _[Ecc][610A [Ecc] [
N) y iy S s S 650
623 622 621 24B Data- |
Parity
Data Row 667: 637
24B Data
1B Parity \
Adaptive Storage Read Module 4
113 - Bank Controller
~ 241 252
1277
629
I A A A :
B50A

EEEREENEEEERERRNNRERE

Tt 0 W O Pl O . O
[N N O N A O O O ¢

]»6508

0,01 2 3 45 6 7 8 910111213 14 15 1617 18 19 20 21 22 23 24

116AY 118" — T {16Y
. 116B 116X

FIG. 6C

115

U.S. Patent Aug. 25, 2015 Sheet 10 of 28 US 9,116,823 B2

603
Adaptive Storage
113
127
667, |
L, ¥ v W e o W W

D238 0233 Q238 R233 S238 T238 U238 V238 W238

D236 O230| Q30| R239| S239| T230|Uz2sg| ... V239|Wasd SN
e .
0 1 2 3 4 5 6 79 20 21 22 23 24 ranty
e S—

) \ \ Y,

{ M (

621 (115 629

622
623

FIG. 6D

U.S. Patent

Aug. 25, 2015 Sheet 11 of 28 US 9,116,823 B2

604
Data Packets 610 240B ECC Codewords
Comprising 512B of Write Module 240 620 Comprising 224B
Data 612, and 8B 610A of Packet Data 6104,
tadata 614 d 16B of ECC - -
melacatd e an © Adaptive Write
| Data612A [614A| 248
5 2623 6/29
Data Stream[™"packet ECC Write TR
| 242 246 il
EE
mls
Data of Packet 610A SE Y
, A \ <
O B
[610B 610ATEcc]] 610A TEecc| 610A [Eecc] i
623 622 621 24B Datax
Parity
Data Row 667: 637
24B Data
1B Parity\
. Y
Adaptive Storage Read Module Bank Controller
113 241 D
127 ¢
Z 629
O O
AN oo
62
62
'650A
16508
&1_&3 iS 6 7 8 9 101 12131415161718192021&%23&
116A Y116CTA16E Y - 116W T 116Y
116B 116D 116F 116X g

s FIG. 6E

U.S. Patent Aug. 25, 2015 Sheet 12 of 28 US 9,116,823 B2

605
Adaptive Storage
113
127
667.,1 7 i
Do | D1 | Oo | 01 | Qo| Qs Yol Y| 2| 24 \
.. £ 668
Dz D3 O2 03 QZ Q3 Yz Y3 Zz 23 .
D4 D5 O4 OS Q4 QS Y4 Y5 24 25
Ds D7 06 07 QG Q7 Ye Y7 Z@ Z7

D236 D237 O236 0237 Q236 Q237

D238 D239 0238 0239 Q238 Q239
0

T 2 3 4 5
((R
621 622 623

FIG. 6F

5 Parity

U.S. Patent

5424

Aug. 25, 2015 Sheet 13 of 28 US 9,116,823 B2
606
118~
ECCCW | ECCCW | ECCCw ECC CW Vertical
0 4 8 e, 92 Stripe
ECCCW | ECCCW | ECCCW ECCCW | >g48A
1 5 I 93
ECCCW | ECCCw | ECcCcw ECC CW
2 6 (I 93
ECCCW | ECCCw | Ecccw ECC CW
3 7 11 95 J
ECCCW | ECCCW | ECCCW ECC CW Vertical
96 100 104 | 184 Stripe
ECCCW | ECCCW | ECCCW ECCCW | lgaem
97 101 105 | 185
ECCCW | ECCCW | Ecccw ECC CW
08 102 106 | 186
ECCCW | ECCCW | ECCcw ECC CW
99 103 107 187)
ECCCW | ECCCW | ECCCW ECC CW Vertical
288 292 206 | 380 Stripe
ECCCW | ECCCW | ECCCW ECCCW | lasaN
289 293 297 381
ECCCW | ECCCW | ECCCW | 7 ECCCW
290 294 298 382
ECCCW | ECCCW | Ecccw | 7 ECC CW
291 295 299 383
0 1 2 24

Z

" FIG. 6G

U.S. Patent Aug. 25, 2015 Sheet 14 of 28 US 9,116,823 B2

4 ECC CwW
Vertical

¢ Stripe
746A

23

8 ECCCW
Vertical

. Stripe
7468

23

U.S. Patent Aug. 25, 2015 Sheet 15 of 28 US 9,116,823 B2

608
Storage Metadata / Write Module 240
/o 135 ’
Packet 620 — Adaptive Write 248
% 0 A Adaptive Fill (Rotate and Pad) 660
Whiten ; 1 * 1 '
244 3 RS
v g Vs vs | | Vs vs | |Pariy
oo | [
246 o BN S o 662A | |s62B| |862C g62x | | 662Y
Relational W
646 X] | |]]
Y .
Z 1) Parity 637
Write Buffer
250
667
Adaptive Storage Read Module Bank Controller Log Storage
113 241 252 137
667A, 1187y ¢~127 —
T3 i T 88 | BP0]) Vertical
1 5 Fi | 89 | P1| (oiPe
2 6 Filb . 90 P2
3 7 Fill 91 P3
542+ ;
921 9% | Ffm_].__. 180_| P4 |) Yereal
93 o7 | _Fl_| " 181 | P5 | | o>
94 98 Fill e 182 P6
95 99 Fill 183 P7
S*N Fil | W PW Vertical
SNt | Fil_ | X_ | PX g;'g;\le
SN2 | - Rl | [Y [PY
FIG. 6l | [sRe1 = Fil Z | Pz
.0 1 2 23,

U.S. Patent Aug. 25, 2015 Sheet 16 of 28 US 9,116,823 B2

609)
/' M
814\A/;
542A< 846A
I
T >8468
\. S
1 :\
542N< | 8asN
P
0 21 - -
1611
2k
R L
i
I

Adaptive Read 247 gf
Read Sequence (Reorder) 663 N
522CJ

U.S. Patent Aug. 25, 2015 Sheet 17 of 28 US 9,116,823 B2

1610
 Storage Metadata ' Read Module 241
135
Depacket Adaptive Read 247
239
] 620\1 Read Sequence (Reorder) 663
Dewhiten 0 h
243 1
2
3 665A| [665B| |665C| * |665X| |665Y
ECC Read 4
245 5
6
Rel. Verify !
545
W
X Adaptive Strip 661
N
Z P
Read Buffer
251
) [
Adaptive Storage Write Module Log Stor.
Bank Controller 9 age
113 240 > 252 137
118y ¢»127
0 4 8 | 92 PO |
546A 1 5 9 93 | P1
2 6 10 e 94 p2
3 7 11 95 P3
] 96 100 | 104 | 184 | P4
gas< |97 101 105 | 185 | P5
98 102 106 | ... 186 P6 | >542
99 103 107 | 187 P7
4 S*N e e W PW
646N < S*N+1 S D X PX
S*™N+2 | - Y PY
FIG. 6K S*N+3 Z Pz |/
.0 1 2 23 24

%

-y
S
[92]

U.S. Patent Aug. 25, 2015 Sheet 18 of 28 US 9,116,823 B2
612
Storage Metadata Write Module
Packet ECC Codeword
242 Symbols Adaptive Write 248
[—e0 %0~ 8 8 8
Whiten S % 1
244 3 ‘ 2
* $2 3
: 53 4
ECC Write Y
246 S5 L S
ECC Symbol 56 > P
Generator S7 ////////% N
886 l
X Parity
Relational SY
645 527) 837
Write Buffer
250
667
Adaptive Storage Read Module | Bank Controller Log Storage
113 241 - 252 137
N iy J
667/? 115
6678{ 50,5151 53154185 |Sg | .. S19] Sao| Sa1| Szz) Szz| Pa |
| So4) Sos| Sos| So7| Sea|Sas | Sao Sa3| Saa| Sus| Sag| Sar| Ps |
N M M M H : N : H Sx SY SZ P-N
R DS P B I D S I
TT6A"S,_Ti6C S, Ti6E 5 1766 116U S 116w Y 116Y
1168 118D 116F 16T 116V 116X

U.S. Patent Aug. 25, 2015 Sheet 19 of 28 US 9,116,823 B2
1613
Storage Metadata Wirite Module 240
135
Packet Adaptive Write 248
242
ECC Symbol 631A_0 537
[632A 637
Whiten e - ECC Symbol 631A_1
244 - ECC Symbol 631A 2
* ECC Symbol 631A_23
, 631A | 631B =
ECC Write [[ECC Symbol 631B_0
248 3 > ECC Symbol 631B_1
ECC Symbol sy N ECC Symbol 631B_2
Generator ECC Symbols 630 6328
686 1 ECC Symbol 631B_23
Relational 5
646
l
Write Buffer
250
667
Adaptive Storage Read Module Bank Controller Log Storage
113 241 252 137
A
y 5
o O I -
V0% 2 1205 1 0 7 0 V0 1 0 VA VA 7 78 G s s 0 7 523
\ J
. 115
867A
6678 » 631A_22 | B31A_23| PA
4| 631B_0 | 8318 1 | 631B_2 6318 22 | 631B_23| PB
0 1 2 22 24 24
116A 116C 116W ~ 116Y
1168 116X

U.S. Patent Aug. 25, 2015 Sheet 20 of 28 US 9,116,823 B2

Data Packet 6101{ Data 5128 ! HDR 8B '

1614 ECC Codeword i
ol Symbolc; i ECC Wiite 245 Wirite Module 240
630
S .
|so[s1]s2] .. | |s534]s535]
| Adaptive Write 248
Sofid-State Storage Array 115 v
‘[so S1 s2 S3 S4 S5 S6 S7 s22 || s23][Po
i| 524 || 525 || s26 || 527 || s28 || s29 || s30 || s31 s46 || s47 || P1 |}
i| s48 || 549 || s59 || se0 || s61 || s62 || S63 || se4 S70 || S71 P2
i] s72 || s73 || s74 || s75 || s76 || S77 || S78 || S79 | | s94 || s95 || P3
i 596 || s97 || se8 || s99 |[s100 || 101 s102 || S103 S118 || S119 || P4 |
i15120 || s121 || S122 || $123 || s124 || 5125 || 5126 || 5127 S142 || s143 || P5 |
i | 5504 || 5505 || 5506 || S507 || S508 || s509 || s510 || S511 526 || $527 || P20 |
1] 5528 || S529 || S530 || 5531 || 5532 || 5533 || S534 || 5535 P21 |}
! 116A 116B 116C 116D 116E 116F 116G 116H 116W 116X 116Y i
et e e meamteonnoofeaneeoeeameeoteamteameeseesmesseesteessesessesssestessessesssesemosemmemmeomenseeeoeemeeomeemeeen i
i
i 7
ECC Codeword Adaptive Read 249
Symbols : Read Module 241
630~] s0 [s1[sa] | [ssaalssss| o
ECC Read
Data Packet 245
6107 Data 5128 | HOR 88 687 |
645
—— J
FIG. 60 s
1615
.......... Row
so | st | s2 | s3 | s4 | s5 | s6 | s7 | .. i s22|s23| Pa[fB67A
X : Row
S24 | S25 | S26 | 527 | 28 | S29 | S30 | S31 | S46 | S47 | PB | ¢B67B
I D D D D R : Row
$528 | $520 | S530 | S531 | 5532 | 8533 | 8634 | 8536 | . i XO | X1 | PU | (gg7U
S e O O TR O T ""'"“'H,../ ——
116A 116B 116C 116D 116E 116F 116G 116H 116W 118y

116X

FIG. 6P

U.S. Patent Aug. 25, 2015 Sheet 21 of 28 US 9,116,823 B2

1616
612A. Storage Metadata Write Module 240
6128, 135 : -
Packet 612N Adaptive Write 248
242 SA[0]) Adaptive Fill (Rotate and Pad) 660
Wh'lte SA[1]| | 630A l | :
Ien
244 SA2] ; >6‘?OfA Channel Channel Channel
— s 664A B864A 864N
/ [SAX]]) sax || [(sAX SNIXT]| | e
ECC Write SBIT 1) A S
P PEUR LT Fifo
246 SB[1] SALZ] SA[2] SN[2] 664Y
ECC Symbol SB[2] | 6%‘?8 SA] SA[T] SN[
Generator jm 0B SA[0] SA[0] SNI[O]
686 2Bl I I I l
Relational : Parity 837 I
646 SBJ0]
SB[1]] | 630N
SB[2] of
610N Write Buffer
SBIX 250
66
Adaptive Storage Read Module Bank Controller Log Storage
113 241 252 137
ST A I
A e T 7 T A A A A A A e 7o R
. S
N4
115
667A ...
6678 | SAL0)| SA[1]|SAI2] | SA[3]| SB[O] SB[1]|SB[2](SB[3]| - |SNIO]|SN[1]|SN[2]|SN[3]| P, |:
jSA[4] SA[5]|SA[B]|SA[7]| SB[4]|SB[5]|SB[6]|SB[7]| -+ |SN[4]|SN[5] SNtéjSN[?] Pgl:
667N : : : : : : : : : : o L : A
i SA[X] SBX] SNIX]| Py I
2 4 5T T g 22 23 24
116A § 116C S 116E § ! Bu S ¢ '
116D 116F116G116H 116U 116\/116W116X 118Y
é'ésA 6068 696N .

U.S. Patent Aug. 25, 2015 Sheet 22 of 28 US 9,116,823 B2

700 136 —
Read Packet A Adaptive
Read Packet B SC"%dz”‘e’ Read PacketA, C,E, F
Read Packet C S Read Packet B, D
Read Packet D
Read Packet E
Read Packet F
Packet 710F Packet 710A
)
el - L
Packet 710E
N A R R A N
A
{ g iy
(== Packet 710C
Packet 710D =
N AT 710B
S i e
R

0 1 2 34567891011121314151617181920212223J

~

115

\

710A 710E

710F N 710C 710A v 701
S o B B SR YR ST
N NN

0 1t 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
762

710B. y—
7108) 710D>)
sheked | b b b 1] i o |

I R e S 91011121314151617181920212223

FIG. 7

U.S. Patent Aug. 25, 2015 Sheet 23 of 28 US 9,116,823 B2

(2ol
[ew
(o}

~946A

7 17 947
A _,{: I {J‘" ;f’:
") Rt il
Ao ; ;, 919 >946B
S A
9% 7%
/ 402)
i y T N
] 910C
RO :"i:f: 948N
o Q:\ AR
R O O
N

012 3 45 6 7 8 9 10111213 14 1516 17 18 19 20 21 22 23 24

y
115
961
e
910A 910C 9108

4 N\ 'l N
B4 02 G s 0 R A 2 7 N N R N N N N N Y S N RN
0

12 3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 21 22 23

v 962

910A 919
/ N

,
.4 8 8 o s e e s SN RN SN S N N SN N N N SN NS AN

0 1 2 3 4 5 6 7 8.6 1011 121314 1516 17 18 10 20 21 22 23 24
#\ECC Read 245 (ECC Decode and Correct)

gjl 920A . 929 N
X :
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
J"\ Parity Substitution 172
911A |920A[1] |920A12] | [920A010]]929A[11] [920A[12] | [929A[23] [e47A
9118 |920B[1] |920B[2] .| |920B[10]|929B[11] |929A[12]| [929B[23]|947B

911N [920N[1] [920N[2] | | 920N[10}) 929N[11] | 929N[12]] 929N[23] | 947N

FIG. 8

U.S. Patent Aug. 25, 2015 Sheet 24 of 28

900 —

=

Arrange Data Structures for
Storage on Solid-State
Storage Array
920

Stream Data Structures to
Array
930

Program Data
940

e

FIG. 9

1000~

=

Determine Adaptive Data
Arrangement
1010

Arrange in Accordance with
Determined Data
Arrangement
1020

Stream Data Structures to
Array
1030

Program Data
1040

e

FIG. 10

US 9,116,823 B2

U.S. Patent Aug. 25, 2015 Sheet 25 of 28 US 9,116,823 B2

e)

Determine Storage Location
Within Array
1120

1100 —.

Perform Read Operation
1130

Reconstruct Data
1140

T

FIG. 11

(s)

Buffer Storage Requests
1210

1200 —

Determine Storage Location of
Requests Within Array
1220
Identify Concurrent/Conflicting
Requests
1222

Schedule/Combine Requests
1224

Perform of Scheduled Requests
1230

Reconstruct Data
1240

e)

FIG. 12

U.S. Patent

Aug. 25, 2015 Sheet 26 of 28

1300\‘
(Start >

|

Detect Uncorrectable Error
1320

|

Perform Read Operation
1330

|

Correct ECC Data Structures
1340

Reconstruct Data Using Corrected
ECC Data Structures
1350

=

FIG. 13

(Start)

Acquire Profiling Data
1420

Calculate Performance Metrics
1430

Determine Adaptive Storage Configuration
1440

e

FIG. 14

US 9,116,823 B2

U.S. Patent Aug. 25, 2015 Sheet 27 of 28 US 9,116,823 B2

1500
4

Generate ECC Symbols
1530

4

Store ECC Symbols
1540

FIG. 15

1600
M

Validate ECC Symbols
1640

CC Symbo
Unavailable?
1650

!

Reconstruct Data from ECC
Symbols
1660

FIG. 16

Reconstruct ECC Symbol
1652

U.S. Patent Aug. 25, 2015 Sheet 28 of 28 US 9,116,823 B2

1700

Receive Request
1720

h 4

Validate ECC Symbols
1740

indicate OOS Storage
Element
1755

ake Storage
Element O0S?
1745

!

Provide Requested Data
1760

FIG. 17

US 9,116,823 B2

1
SYSTEMS AND METHODS FOR ADAPTIVE
ERROR-CORRECTION CODING

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation-in-part of, and claims
priority to, U.S. patent application Ser. No. 13/784,705,
entitled “Systems and Methods for Adaptive Storage,” filed
Mar. 4, 2013 for David Flynn et al., which claims priority to
U.S. Provisional Patent Application Ser. No. 61/606,253,
entitled “Adaptive Data Arrangement,” filed Mar. 2, 2012 for
David Flynn et al. and to U.S. Provisional Patent Application
Ser. No. 61/606,755, entitled “Adaptive Data Arrangement,”
filed Mar. 5, 2012, for David Flynn et al., and is a continua-
tion-in-part of, and claims priority to, U.S. patent application
Ser. No. 13/296,834, entitled “Apparatus, System, and
Method for Storage Space Recovery in Solid-State Storage,”
filed Nov. 15, 2011, for David Flynn et al., which is a con-
tinuation-in-part of, and claims priority to, U.S. patent appli-
cation Ser. No. 11/952,101, entitled “Apparatus, System, and
Method for Storage Space Recovery in Solid-State Storage,”
filed Dec. 6, 2007 for David Flynn, et al., which claims
priority to U.S. Provisional Patent Application Ser. No.
60/873,111, entitled “Elemental Blade System,” filed Dec. 6,
2006 for David Flynn, et al., and to U.S. Provisional Patent
Application Ser. No. 60/974,470, entitled “Apparatus, Sys-
tem, and Method for Object-Oriented Solid-State Storage,”
filed Sep. 22, 2007 for David Flynn, et al., each of which is
incorporated herein by reference.

TECHNICAL FIELD

This disclosure relates to data storage and, in particular, to
data layout and/or arrangement on a solid-state storage array.

BACKGROUND

Solid-state storage devices may have different read time Tr,
stream time Ts, and other characteristics, which may affect
device performance in different data layout configurations. In
addition, data layout configurations and, in particular, error-
correction code (ECC) encoding may determine performance
and data security characteristics of a storage device. However,
many storage systems use static, fixed-size ECC encoding
schemes, which are tied to the underlying structure of the
storage media.

SUMMARY

Disclosed herein are embodiments of an apparatus, com-
prising an error-correcting code (ECC) write module config-
ured to generate a plurality of ECC codeword symbols com-
prising data of a storage request, wherein the ECC codeword
symbols are configured for storage within respective columns
of'a solid-state storage array, each column comprising one or
more solid-state storage elements, and an adaptive write mod-
ule configured to stream the ECC codeword symbols com-
prising the data of the storage request to respective columns
of a set of two or more columns of the solid-state storage
array.

The data of the storage request may comprise a data packet,
a data segment, a block, and/or a sector. The ECC write
module may be configured to generate a plurality of ECC
codeword symbols comprising the data and the adaptive write

10

15

20

25

30

35

40

45

50

55

60

65

2

module may be configured to distribute the ECC codeword
symbols between a plurality of different solid-state storage
elements.

The adaptive write module may be configured to stream the
ECC codeword symbols to the solid-state storage array in a
plurality of data rows, each data row comprising data for
storage within a respective one of the columns. The apparatus
may include a parity module configured to generate parity
data corresponding to each of the data rows.

The adaptive write module may be configured to stream the
ECC codeword symbols comprising the data of the storage
request to a first independent channel comprising a subset of
the columns of the array with ECC codeword symbols com-
prising data of another storage request to a different indepen-
dent channel comprising a different subset of the columns of
the array.

In some embodiments, the apparatus comprises a read
module configured to read a plurality of ECC codeword sym-
bols stored within a plurality of different solid-state storage
elements. Each ECC codeword symbol may be read from a
respective one of the solid-state storage elements. The appa-
ratus may further include a data recovery module configured
to reconstruct an unavailable ECC codeword symbol read
from a first one of the solid-state storage elements using other
ECC codeword symbols stored on others of the solid-state
storage elements. The data recovery module may be config-
ured to reconstruct the unavailable ECC codeword symbol by
use of parity data corresponding to the unavailable codeword
and other ECC codeword symbols.

The adaptive write module may be configured to stream a
respective ECC codeword symbol to a plurality of solid-state
storage elements in each of a plurality of stream cycles. The
apparatus may further include a parity module configured to
generate parity data corresponding to the ECC symbols being
streamed to the plurality of solid-state storage elements in the
stream cycle. The adaptive write module may be configured
to stream the parity data with the ECC codeword symbols
corresponding to the parity data.

The ECC write module may be configured to generate
one-byte ECC codeword symbols, and the adaptive write
module may be configured to stream a respective one of the
ECC codeword symbols to each of a plurality of solid-state
storage elements in each of a plurality of bus cycles. In some
embodiments, the ECC write module is configured to gener-
ate multi-byte ECC codeword symbols, and the adaptive
write module is configured to stream portions of the multi-
byte ECC codeword symbols to respective solid-state storage
elements in each of a plurality of stream cycles, such that the
portions of each multi-byte ECC codeword symbol are
streamed to a respective one of the solid-state storage ele-
ments.

Disclosed herein are embodiments of a method for adap-
tive error-correcting encoding. The disclosed methods may
comprise one or more machine-executable operations and/or
steps. The disclosed operations and/or steps may be embod-
ied as program code stored on a computer readable storage
medium. Accordingly, embodiments of the methods dis-
closed herein may be embodied as a computer program prod-
uct comprising a computer readable storage medium storing
computer usable program code executable to perform one or
more method operations and/or steps.

Embodiments of the disclosed method may include deter-
mining a storage location of a plurality of error-correcting
code (ECC) codewords comprising requested data, wherein
the ECC codewords are stored within a group of two or more
of'a plurality of solid-state storage elements, identitying ECC
codewords comprising data of one or more other requests

US 9,116,823 B2

3

stored within different groups of the solid-state storage ele-
ments, and/or scheduling a read operation configured to read
the ECC codewords of the requested data and ECC code-
words comprising data of the one or more other requests in a
single read operation on the solid-state storage elements. The
ECC codewords may comprise ECC codeword symbols, and
the ECC codeword symbols comprising the requested data
may be stored within respective solid-state storage elements
of the group of two or more different solid-state storage
elements. The method may further include verifying that the
ECC codeword symbols comprise the requested data by veri-
fying a mark on the ECC codeword symbols corresponding to
relational information pertaining to the requested data.

In some embodiments, the method further includes queu-
ing storage requests in an request buffer, and determining a
storage location of ECC codewords of one or more other
requests in the request buffer. Scheduling the read operation
may comprise reordering one or more storage requests in the
request buffer and/or indicating different addressing informa-
tion for two or more of the solid-state storage elements. The
method may further comprise reordering contents of a read
buffer to reconstruct a data packet stored within the plurality
of ECC codewords comprising the requested data.

Disclosed herein are embodiments of a system, comprising
means for generating a plurality of sets ECC symbols,
wherein each set of ECC symbols comprises data of different
respective storage requests, means for arranging the sets of
ECC symbols for storage within different independent chan-
nels, each channel comprising two or more solid-state storage
elements, and/or means for storing the arranged sets of ECC
symbols to the different independent channels, which may
comprise means for storing each ECC symbol to within a
respective one of the solid-state storage elements of a respec-
tive independent channel. The system may further include
means for identifying an independent channel comprising a
set of ECC symbols corresponding to requested data, and/or
means for extracting the requested data from the set of ECC
symbols read from the identified independent channel. In
some embodiments, the system comprises means for combin-
ing two or more read requests pertaining to ECC symbols
stored within different independent channels.

Some embodiments of the system may comprise means for
reconstructing an uncorrectable ECC symbol read from one
of the solid-state storage elements by use of a plurality of
ECC symbols stored within others of the solid-state storage
elements.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of one embodiment of a system
for adaptive storage;

FIG. 2 is a block diagram of one embodiment of a storage
module;

FIG. 3 depicts one embodiment of a packet;

FIG. 4 depicts one embodiment of ECC codewords com-
prising one or more data segments;

FIG. 5A is ablock diagram depicting one embodiment of a
solid-state storage array;

FIG. 5B is a block diagram depicting another embodiment
of a solid-state storage array;

FIG. 5C is a block diagram depicting another embodiment
of banks of solid-state storage arrays;

FIG. 5D depicts one embodiment of sequential bank inter-
leave;

FIG. 5E depicts another embodiment of sequential bank
interleave;

20

40

45

50

55

65

4

FIG. 6A is a block diagram of one embodiment of a system
for adaptive data storage;

FIG. 6B depicts one embodiment of horizontal, adaptive
data storage;

FIG. 6C is a block diagram of another embodiment of a
system for adaptive data storage;

FIG. 6D depicts one embodiment of vertical, adaptive data
storage;

FIG. 6E is a block diagram of another embodiment of a
system for adaptive data storage;

FIG. 6F depicts another embodiment of adaptive data stor-
age on a solid-state storage array;

FIG. 6G depicts one embodiment of a vertical stripe con-
figuration on a solid-state storage array;

FIG. 6H depicts another embodiment of a vertical stripe
configuration on a solid-state storage array;

FIG. 61 is a block diagram of another embodiment of a
system for adaptive data storage;

FIG. 6] depicts another embodiment of a vertical stripe
configuration on a solid-state storage array;

FIG. 6K is a block diagram of another embodiment of a
system for adaptive data storage;

FIG. 6L is a block diagram of another embodiment of a
system for adaptive data storage;

FIG. 6M is a block diagram of another embodiment of a
system for adaptive data storage;

FIG. 6N is a block diagram of another embodiment of a
system for adaptive data storage;

FIG. 60 is a block diagram depicting another embodiment
of data flow in an adaptive storage system;

FIG. 6P is a block diagram depicting ECC codeword sym-
bol reconstruction;

FIG. 6Q is a block diagram of another embodiment of a
system for adaptive storage;

FIG. 7 depicts one embodiment of a system for adaptive
scheduling;

FIG. 8 depicts one embodiment of a system for adaptive
data reconstruction;

FIG. 9 is a flow diagram of one embodiment of a method
for adaptive storage on a solid-state storage array;

FIG. 10 is a flow diagram of another embodiment of a
method for adaptive storage on a solid-state storage array;

FIG. 11 is a flow diagram of another embodiment of a
method for adaptive storage on a solid-state storage array;

FIG. 12 is a flow diagram of one embodiment of a method
for adaptive scheduling of storage requests;

FIG. 13 is a flow diagram of one embodiment of a method
for adaptive data recovery;

FIG. 14 is a flow diagram of one embodiment of a method
for determining an adaptive data storage configuration; and

FIG. 15 is a flow diagram of one embodiment of a method
for adaptive data storage using ECC codeword symbols;

FIG. 16 is a flow diagram of one embodiment of a method
for data recovery in an adaptive storage environment; and

FIG. 17 is a flow diagram of another embodiment of a
method for data recovery in an adaptive storage environment.

DETAILED DESCRIPTION

FIG. 1 is a block diagram of one embodiment of a system
100 comprising a storage module 130 configured to manage a
solid-state storage medium 110. The storage module 130 may
comprise an adaptive storage module 113, a logical-to-physi-
cal translation layer 132, a storage metadata module 134, a
log storage module 137, a groomer module 138, a profiling
module, and a data recovery module 170. The storage module
130 may comprise software and/or hardware components.

US 9,116,823 B2

5

Portions of the storage module 130 (and/or the modules and/
or components thereof) may be implemented using software
modules, such as drivers, services, and/or the like. Other
portions of the storage module 130 (and/or the modules and/
or components thereof) may be implemented using hardware
resources, such as FPGAs, processors, ASICS, hardware con-
trollers, storage controllers, and the like.

The solid-state storage medium 110 may comprise a non-
volatile, solid-state storage medium, such as flash memory,
nano random access memory (nano RAM or NRAM), nanoc-
rystal wire-based memory, silicon-oxide based sub-10
nanometer process memory, graphene memory, Silicon-Ox-
ide-Nitride-Oxide-Silicon (SONOS), Resistive Random-Ac-
cess Memory (RRAM), Programmable Metallization Cell
(PMC), Conductive-Bridging RAM (CBRAM), Magneto-
Resistive RAM (MRAM), Dynamic RAM (DRAM), Phase
change RAM (PRAM), or the like. The solid-state storage
medium 110 may comprise a plurality of physical storage
units (e.g., storage cells) configured for persistent data stor-
age. The physical storage units may be arranged in groups,
such as pages, which may be partitioned into storage divi-
sions, such as erase blocks. The solid-state storage medium
110 may comprise pages of any suitable size. The page size of
asolid-state storage medium 110 may range from 512 bytes to
32 kb.

The adaptive storage module 113 may be configured to
write data to and/or read data from the solid-state storage
medium 110 via a bus 127. The adaptive storage module 113
may comprise one or more hardware components, such as bus
controllers, DMA controllers, storage controllers, storage
media controllers, and the like. The adaptive storage module
113 may further comprise firmware, software modules, driv-
ers, interface modules, and/or and the like.

The bus 127 may comprise a storage /O bus for commu-
nicating data to/from the solid-state storage medium 110, and
may further comprise a control I/O bus for providing address-
ing and other command and control information to the solid-
state storage medium 110.

The storage module 130 may comprise and/or be imple-
mented on a computing device 101. In some embodiments,
portions of the storage module 130 may be internal to the
computing device 101; for example, portions of the storage
module 130 and/or solid-state storage medium 110 may be
connected using a system bus, such as a peripheral compo-
nent interconnect express (PCI-e) bus, a Serial Advanced
Technology Attachment (serial ATA) bus, or the like. The
disclosure is not limited in this regard; in some embodiments,
components of the storage module 130 may be external to the
computing device 101, and may be connected via a universal
serial bus (USB) connection, an Institute of Electrical and
Electronics Engineers (IEEE) 1394 bus (FireWire), an exter-
nal PCI bus, Infiniband, or the like.

The computing device 101 may comprise a processor 103,
volatile memory 106, and/or persistent storage 105. The pro-
cessor 103 may comprise one or more general and/or special
purpose processing elements. The processor 103 may be con-
figured to execute instructions loaded into the volatile
memory 106 from the persistent storage 105. Portions of one
or more of the modules of the storage module 130 may be
embodied as machine-readable instructions stored on the per-
sistent storage 105. The instructions may be configured for
execution by the processor 103 to implement one or more of
the modules and/or methods described herein.

One or more storage clients 104 may access storage ser-
vices provided by the storage module 130 through a storage
interface 131. The storage interface 131 may comprise a
block device interface, a virtualized storage interface, an

10

15

20

25

30

35

40

45

50

55

60

65

6

object storage interface, a database storage interface, and/or
other suitable interface and/or Application Programming
Interface (API). The storage module 130 may further com-
prise a logical-to-physical translation layer 132 to map and/or
associate identifiers of the storage client 104 with physical
storage locations (e.g., physical addresses) on the solid-state
storage medium 110. The logical-to-physical translation
layer 132 may provide for “any-to-any” mappings between
logical identifiers and physical storage locations, such that
data may be written and/or updated “out-of-place” on the
solid-state storage medium 110. As used herein, a physical
address refers to an address (or other reference) capable of
referencing a particular storage location on the solid-state
storage medium 110. Accordingly, a physical address may be
a “media address.”

The storage module 130 may comprise a storage metadata
module 134 configured to maintain storage metadata 135
pertaining to storage operations performed on the solid-state
storage medium 110. The storage metadata 135 may include,
but is not limited to: an index comprising any-to-any map-
pings between logical identifiers of a logical address space
and physical storage locations on the solid-state storage
medium 110, a reverse index pertaining to the contents of the
solid-state storage medium 110, one or more validity bitmaps,
reliability testing and/or status metadata, status information,
such as error rate, retirement status, and so on. Portions of the
metadata 135 may be stored on a volatile memory 106. Alter-
natively, or in addition, portions of the metadata 135 may be
periodically stored on a persistent storage medium, such as
the persistent storage 105, solid-state storage medium 110, or
the like.

The storage module 130 may comprise a request buffer 136
configured to buffer storage requests received via the storage
interface 131. The request buffer 136 may comprise an
ordered buffer, such as a first-in-first-out (FIFO) or the like.
The request buffer 136 may, therefore, be configured to main-
tain the order of incoming storage requests. As used herein, a
storage request refers to one or more of a request to store,
write, overwrite, modify, cache, delete, erase, read, and/or
otherwise manage data by use of the storage module 130. The
storage module 130 may be configured to service the storage
requests in the request buffer 136. The storage module 130
may be configured to service the storage requests in the order
they were received. Alternatively, the storage module 130
may be configured to reorder the storage requests to improve
throughput and/or efficiency. The storage module 130 may be
configured to reorder the storage requests to avoid data haz-
ards, such as read-before-write, write-before-read, and so on.

The storage module 130 may comprise a log storage mod-
ule 137 configured to store data in a “contextual format” on
the solid-state storage medium 110. As used herein, a “con-
textual format™ refers to a data format in which a logical
interface of a data segment is associated with the data seg-
ment on the solid-state storage medium 110. For example, a
contextual format may comprise a packet format that includes
a header indicating one or more logical identifiers of a data
segment, or the like. The contextual format may be used to
reconstruct the mappings of the logical-to-physical transla-
tion layer 132 (and/or storage metadata 135), such as any-to-
any mappings between logical identifiers and physical stor-
age locations, reverse index metadata, and the like.

In some embodiments, the storage module 130 comprises a
groomer module 138 configured to perform grooming opera-
tions on the solid-state storage medium 110. Grooming
operations may include, but are not limited to: reclaiming
storage resources, erasure, wear leveling, refreshing data
stored on the solid-state storage medium 110, and so on. The

US 9,116,823 B2

7

groomer module 138 may operate outside of the path for
servicing other, higher-priority storage operations and/or
requests. Therefore, the groomer module 138 may operate as
an autonomous, background process, which may be sus-
pended and/or deferred while other storage operations are in
process. Alternatively, the groomer module 138 may operate
in the foreground while other storage operations are being
serviced. The groomer 138 may wear-level the non-volatile
storage medium 110, such that data is systematically spread
throughout different storage locations, which may improve
performance and data reliability, and avoid overuse and/or
underuse of particular storage locations, thereby lengthening
the useful life of the solid-state storage medium 110. Groom-
ing an erase block (or logical erase block) may comprise
relocating valid data (if any) to other storage locations, eras-
ing the erase block, and/or initializing the erase block for
storage operations (e.g., marking the erase block with a
sequence indicator, sequence number, timestamp, or the like).
The groomer module 138 may operate within a driver of the
storage module 130. Alternatively, or in addition, portions of
the groomer module 138 may be implemented on the adaptive
storage module 113 (e.g., as hardware components, firmware,
programmable hardware components, or the like).

In some embodiments, the solid-state storage medium 110
may comprise one or more arrays 115 of solid-state storage
elements 116 A-Y. As used herein, a solid-state storage array
(or array) refers to a set of two or more independent columns
118. A column 118 may comprise a solid-state storage ele-
ment 116 A-Y that is communicatively coupled to the storage
module 130 in parallel by the adaptive storage module 113
using, inter alia, the bus 127. Rows 117 of the array 115 may
comprise physical storage units of the respective columns 118
(solid-state storage elements 116A-Y). As used herein, a
solid-state storage element 116 A-Y includes but is not lim-
ited to solid-state storage resources embodied as: a package,
chip, die, plane, printed circuit board, and/or the like. The
solid-state storage elements 116A-Y comprising the array
115 may be capable of independent operation. Accordingly, a
first one of the solid-state storage elements 116A may be
capable of performing a first storage operation while a second
solid-state storage element 116B performs a different storage
operation. For example, the solid-state storage element 116A
may be configured to read data at a first physical address,
while another solid-state storage element 116B reads data at
a different physical address.

A solid-state storage array 115 may also be referred to as a
logical storage element (LSE). As disclosed in further detail
below, an array or logical storage element 115 may comprise
logical storage units (rows 117). As used herein, a “logical
storage unit” or row 117 refers to a logical construct combin-
ing two or more physical storage units, each physical storage
unit on a respective column 118 of the array 115. A logical
erase block refers to a set of two or more physical erase
blocks, a logical page refers to a set of two or more pages, and
so on. In some embodiments a logical erase block may com-
prise erase blocks within respective logical storage elements
115 and/or banks. Alternatively, a logical erase block may
comprise erase blocks within a plurality of different arrays
115 and/or may span multiple banks of solid-state storage
elements.

The storage module 130 may further comprise an adaptive
storage module 113 configured to arrange data for storage on
the solid-state storage array 115 according to an adaptive data
layout. As used herein, an adaptive data layout refers to the
layout of storage data segments within different portions of
the solid-state storage array 115. As used herein, a data seg-
ment refers to a quantum of structured or unstructured data; a

10

15

20

25

30

35

40

45

50

55

60

8

data segment may, therefore, include, but is not limited to:
data pertaining to a storage request, data corresponding to one
or more logical identifiers, one or more data blocks, a data
structure, such as a data packet, container, or the like, a data
set, such as a data range, extent, or the like, an ECC codeword,
such as an ECC syndrome, an ECC symbol, an ECC chunk, or
the like, unstructured data, structured data, a data record, or
the like.

The adaptive storage module 113 may be configured to
store data in a horizontal layout, which may comprise storing
data segments horizontally within rows 117 of the array (e.g.,
across a plurality of the solid-state storage elements 116 A-Y
of'the array 115). A vertical layout may comprise storing data
segments within respective columns 118 of the array 115
(e.g., within a single solid-state storage elements 116A-Y).
Other layouts may comprise storing data on subsets of the
solid-state storage elements 116 A-Y (e.g., sets of two, four, or
more solid-state storage elements 116A-Y). The storage
module 130 may comprise an adaptive storage profiling mod-
ule 160 configured to determine an optimal data layout for the
array 115 based on one or more of data read latency, stream
latency, data access patterns, profiling information, desired
data recovery characteristics, usage and/or the like.

In some embodiments, the storage module 130 further
comprises a data recovery module 170. The data recovery
module 170 may be configured to recover data stored on the
solid-state storage medium 110. The storage module 130 may
be configured to generate error recovery data, such as ECC
data, parity data, and/or the like. The error recovery data may
be stored on the solid-state storage medium 110. The ECC
data may be used to detect and/or correct errors in data read
from the array 115. Data comprising uncorrectable errors
may be reconstructed by use of parity data. Uncorrectable
errors may result from failure of a portion of a particular
column 118 (e.g., failure of an erase block, plane, die, or other
portion of a particular solid-state storage element 116 A-Y).
As disclosed in further detail herein, data corresponding to
the failed column 118 may be reconstructed by use of data
stored on other solid-state storage elements 116A-Y. In some
embodiments, reconstructing data of a failed solid-state stor-
age element 116 A-Y may comprise reading one or more ECC
codewords stored on other columns 118 of the array 115,
correcting errors within the one or more other ECC code-
words (e.g., decoding the ECC codewords), and using the
corrected ECC codewords to reconstruct data of the failed
element 116A-Y. The data recovery module 170 may com-
prise a parity substitution module 172 configured to recon-
struct data of a failed column by use of error-corrected ECC
codewords and/or parity data stored within the array 115. In
some embodiments, data of the failed column may be recon-
structed without decoding and/or correcting the other ECC
codewords; if the other columns 118 have low error rates
(and/or low levels of wear), the reconstruction module 170
may be configured to perform the parity substitution opera-
tions without first decoding and/or correcting the other ECC
codewords.

FIG. 2 is a block of one embodiment of a storage module
130 configured to manage data storage operations on a solid-
state storage medium 110. In some embodiments, the solid-
state storage medium 110 may comprise one or more inde-
pendent banks 119A-N of solid-state storage arrays 115A-N.
As disclosed above, each array 115A-N may comprise a
plurality of solid-state storage elements communicatively
coupled to the adaptive storage module 113 in parallel via a
bus 127.

The adaptive storage module 113 may comprise a request
module 231 configured to receive storage requests from the

US 9,116,823 B2

9

storage module 130 and/or other storage clients 104. The
request module 231 may be configured to perform storage
operations on the solid-state storage medium 110 in response
to the requests, which may comprise transferring data to/from
the storage module 130 and/or storage clients 104. Accord-
ingly, the request module 231 may comprise one or more
direct memory access (DMA) modules, remote DMA mod-
ules, bus controllers, bridges, buffers, and the like.

The adaptive storage module 113 may comprise a write
module 240 configured to process data for storage on the
solid-state storage medium 110. In some embodiments, the
write module 240 comprises one or more modules configured
to process and/or format data for storage on the solid-state
storage medium 110, which may include, but are not limited
to: a packet module 242, a whiten module 244, an ECC write
module 246, an adaptive write module 248, and a write buffer
250. In some embodiments, the write module 240 may further
comprise a compression module, configured to compress data
for storage on the solid-state storage medium 110, one or
more encryption modules configured to encrypt data for stor-
age on the solid-state storage medium 110, and so on. The
read module 241 may comprise one or more modules config-
ured to process and/or format data read from the solid-state
storage medium 110, which may include, but are not limited
to: a read buffer 251, an adaptive read module 247, an ECC
read module 245, a dewhiten module 243, and a depacket
module 239.

In some embodiments, the write module 240 comprises a
write pipeline configured to process data for storage in a
plurality of pipeline stages or modules, as disclosed herein.
Similarly, in some embodiments, the read module 241 may
comprise a read pipeline configured to process data read from
the solid-state storage array 115 in a plurality of pipeline
stages or modules, as disclosed herein.

The packet module 242 may be configured to generate data
packets comprising data to be stored on the solid-state storage
medium 110. The write module 240 may be configured to
store data in a contextual format, as disclosed above. The
contextual format may comprise storing data in a packet
format in which a logical interface of the data is associated
with the data on the solid-state storage medium 110. In some
embodiments, the packet format may include a packet header
comprising one or more logical identifiers of the data con-
tained within the packet, or the like. The contextual format
may further comprise associating data packets with sequence
information, to define, inter alia, a log-order of data packets
on the solid-state storage medium 110. The sequence infor-
mation may comprise sequence numbers, timestamps, or
other indicators that indicate an order of the data packet
relative to other data packets stored on the solid state storage
medium 110. The storage module 130 may use the log-based,
contextual format of data stored on the solid-state storage
medium 110 to reconstruct portions of the storage metadata
135, which may include, but is not limited to: reconstructing
any-to-any mappings between logical identifiers and physical
storage locations maintained by the logical-to-translation
layer 132, a forward index, a reverse index, and/or the like.

In some embodiments, the packet module 242 may be
configured to generate packets of arbitrary lengths and/or
sizes in accordance with the size of storage requests received
via the request receiver module 231 and/or configuration
preferences. The packet module 242 may be configured to
generate packets of one or more pre-determined sizes. In one
embodiment, in response to a request to write 24 k of data to
the solid-state storage medium 110, the packet module 242
may be configured to generate 6 packets, each packet com-
prising 4 k of the data; in another embodiment, the packet

10

15

20

25

30

35

40

45

50

55

60

65

10

module 242 may be configured to generate a single packet
comprising 24 k of data in response to the request.

FIG. 3 depicts one embodiment of a packet format. A
packet 310 may comprise a packet data segment 312 and a
header 314. As disclosed above, the packet data segment 312
may comprise an arbitrary amount of data to be stored on the
solid-state storage medium 110. The header 314 may com-
prise contextual metadata pertaining to the packet 310. In
some embodiments, the header 314 includes a logical identi-
fier indicator 315, which may indicate one or more logical
identifier(s) associated with the data segment. The header 315
may include other metadata, which may include, but is not
limited to: a packet type metadata, a packet size and/or length
metadata, access control metadata, and so on. The packet 310
may be associated with sequence information 318, which
may determine a log order of the packet 310 relative to other
packets on the solid-state storage medium 110. As depicted in
FIG. 3, the sequence information 318 may be stored sepa-
rately from the packet 310. In some embodiments, the
sequence information 318 may be marked on the section of
the solid-state storage medium 110 comprising the data
packet 310 (e.g., erase block, logical erase block, row, or the
like). Alternatively, or in addition, the sequence information
318 may be stored as part of the packet 310 (e.g., as a field
within the header 314 of the packet 310).

The whiten module 244 may be configured to perform one
or more whitening transformations on the data packets gen-
erated by the packet module 242. Data whitening may com-
prise decorrelating the data, which may provide wear-level-
ing benefits for certain types of storage media. In some
embodiments, the whiten module 244 is configured to encrypt
data for storage on the solid-state storage medium 110 in one
or more of a media encryption key, a user encryption key, or
the like.

The ECC write module 246 may be configured to encode
data packets generated by the packet module 242 into respec-
tive ECC codewords. As used herein, an ECC codeword
refers to data and corresponding error detection and/or cor-
rection information. The ECC write module 246 may be
configured to implement any suitable ECC algorithm and
may be configured to generate corresponding ECC informa-
tion (e.g., ECC codewords). As used herein, ECC codewords
include, but are not limited to: data segments and correspond-
ing ECC syndromes, ECC symbols, ECC codeword symbols,
ECC encoded data, ECC chunks, and/or other structured and/
or unstructured ECC information and/or corresponding data.
ECC codewords may comprise any suitable error-correcting
encoding, including, but not limited to: block ECC encoding,
convolutional ECC encoding, Low-Density Parity-Check
(LDPC) encoding, Gallager encoding, Reed-Solomon encod-
ing, Hamming codes, Multidimensional parity encoding,
cyclic error-correcting codes, BCH codes, or the like. The
ECC read module 245 may be configured to decode and/or
correct ECC codewords generated by the ECC write module
246.

The ECC write module 246 may be configured to generate
ECC codewords of a pre-determined size. Accordingly, a
single packet may be encoded into a plurality of different
ECC codewords and/or a single ECC codeword may com-
prise portions of two or more packets.

In some embodiments, the ECC write module 246 is con-
figured to generate ECC codewords, each of which may com-
prise a data segment of length N and a syndrome of length S.
For example, the ECC write module 246 may be configured to
encode data segments into 240-byte ECC codewords, each
ECC codeword comprising 224 bytes of data and 16 bytes of
ECC data. In this embodiment, the ECC encoding may be

US 9,116,823 B2

11

capable of correcting more bit errors than the manufacturer of
the solid-state storage medium 110 requires. In other embodi-
ments, the ECC write module 246 may be configured to
encode data in a symbolic ECC encoding, such that each data
segment of length N produces a symbol of length X. The ECC
write module 246 may encode data according to a selected
ECC “strength.” As used herein, the “strength” of an error-
correcting code refers to the number of errors that can be
detected and/or corrected by use of the error-correcting code.
In some embodiments, the strength of the ECC encoding
implemented by the ECC write module 246 may be adaptive
and/or configurable. In some embodiments, the strength of
the ECC encoding may be selected according to the reliability
and/or error rate of the solid-state storage medium 110. As
disclosed in further detail herein, the strength of the ECC
encoding may be independent of the partitioning of the solid-
state storage medium 110, which may allow the storage mod-
ule 130 to select a suitable ECC encoding strength based on
the conditions of the solid-state storage medium 110, user
requirements, and the like, as opposed to static and/or pre-
determined ECC settings imposed by the manufacturer of the
medium 110.

FIG. 4 depicts one embodiment of data flow 400 between
the packet module 242 and an ECC write module 246. For
clarity, and to avoid obscuring the details of the depicted
embodiment, other modules of the write module 240 are
omitted (e.g., whiten module 244). The packet module 242
may be configured to generate packets 310A-310N in
response to one or more requests to store data on the solid-
state storage medium 110. The packets 310A-N may com-
prise respective packet data segments 312A,312B, and 312N.
The packets 310A-N may further comprise contextual meta-
data embodied in respective headers 314A, 314B, and 314N.
The packets 310A-N may be processed by, inter alia, the ECC
write module 246 to generate ECC codewords. In the FIG. 4
embodiment, the ECC codewords comprise ECC codewords
420A-4207, each of which may comprise a portion of one or
more of the packets 310A-N and a syndrome (not shown). In
other embodiments, the ECC codewords may comprise ECC
symbols or the like.

As illustrated in FIG. 4, the packets 310A-N may vary in
size in accordance with the size of the respective packet data
segments 312A-N and/or header information 314A-N. Alter-
natively, in some embodiments, the packet module 242 may
be configured to generate packets 310A-N of a fixed, uniform
size.

The ECC write module 246 may be configured to generate
ECC codewords 420A-N having a uniform, fixed size; each
ECC codeword 420A-N may comprise N bytes of packet data
and S syndrome bytes, such that each ECC codeword 420 A-N
comprises N+S bytes. In some embodiments, each ECC
codeword comprises 240 bytes, and includes 224 bytes of
packet data (N) and 16 bytes of error correction code (S). The
disclosed embodiments are not limited in this regard, how-
ever, and could be adapted to generate ECC codewords
420A-N of any suitable size, having any suitable ratio
between N and S. Moreover, the ECC write module 242 may
be further adapted to generate ECC symbols, or other ECC
codewords, comprising any suitable ratio between data and
ECC information.

As depicted in FIG. 4, the ECC codewords 420A-N may
comprise portions of one or more packets 310A-N; ECC
codeword 420D comprises data of packets 310A and 310B.
The packets 310A-N may be spread between a plurality of
different ECC codewords 420A-N: ECC codewords 420A-D
comprise data of packet 310A; ECC codewords 420D-H

10

15

20

25

30

35

40

45

50

55

60

12

comprise data of packet 310B; and ECC codewords 420X-Z
comprise data of packet 310N.

Referring back to F1G. 2, the write module 240 may further
comprise an adaptive write module 248 configured to buffer
data to storage on one or more of the solid-state storage arrays
115A-N. As disclosed in further detail below, the adaptive
write module 248 may be configured to store data within one
or more columns 118 of a solid-state storage array 115. The
adaptive write module 248 may be further configured to gen-
erate parity data corresponding to the layout and/or arrange-
ment of the data. As disclosed in further detail below, the
parity data may be configured to protect data stored within
respective rows 117 of the solid-state storage array 115A-N,
and may be generated in accordance with an adaptive storage
layout implemented by the adaptive storage module 113.

In some embodiments, the write module 240 further com-
prises a write buffer 250 configured to buffer data for storage
within respective page write buffers of the solid-state storage
medium 110. The write buffer 250 may comprise one or more
synchronization buffers to synchronize a clock domain of the
adaptive storage module 113 with a clock domain of the
solid-state storage medium 110 (and/or bus 127).

The log storage module 137 may be configured to select
storage location(s) for data storage and/or may provide
addressing and/or control information to the solid-state stor-
age medium 110 via the bus 127. Accordingly, the log storage
module 137 may provide for storing data sequentially at an
append point within the physical address space of the solid-
state storage medium 110. The physical address at which a
particular data segment is stored may be independent of the
logical interface (e.g., logical identifier) of the data segment.
The logical-to-physical translation layer 132 may be config-
ured to associate the logical interface of data segments (e.g.,
logical identifiers of the data segments) with the physical
address(es) of the data segments on the solid-state storage
medium 110. In some embodiments, the logical-to-physical
translation layer 132 may leverage storage metadata 135 to
perform logical-to-physical translations; the storage meta-
data 135 may include a forward index comprising arbitrary,
any-to-any mappings between logical identifiers and physical
addresses. The storage metadata 135 may be maintained in
volatile memory, such as the volatile memory 106. In some
embodiments, the storage metadata module 134 is configured
to periodically store portions of the storage metadata 135 on
a persistent storage medium, such as the solid-state storage
medium 110, persistent storage 105, or the like.

The adaptive storage module 113 may further comprise a
read module 241 that is configured to read data from the
solid-state storage medium 110 in response to requests
received via the request module 231. The read module 241
may be configured to process data read from the solid-state
storage medium 110, and provide the processed data to the
storage module 130 and/or a storage client 104 (by use of the
request module 231). The read module 241 may comprise one
or more modules configured to process and/or format data
stored on the solid-state storage medium 110, which may
include, but are not limited to: read buffer 251, an adaptive
read module 247, ECC read module 245, a dewhiten module
243, and a depacket module 239. In some embodiments, the
read module further includes a decompression module, con-
figured to decompress compressed data stored on the solid-
state storage medium 110, one or more decryption modules
configured to decrypt encrypted data stored on the solid-state
storage medium 110, and so on. Data processed by the read
module 241 may flow to the storage module 130 and/or stor-
age client 104 via the request module 231, and/or other inter-
face or communication channel (e.g., the data may flow

US 9,116,823 B2

13

directly to/from a storage client via a DMA or remote DMA
module of the storage module 130).

Read requests may comprise and/or reference the logical
interface of the requested data, such as a logical identifier, a
range and/or extent of logical identifiers, a set of logical
identifiers, or the like. The physical addresses associated with
data of the request may be determined based, at least in part,
upon the logical-to-physical translation layer 132 (and/or the
storage metadata 135), metadata pertaining to the layout of
the data on the solid-state storage medium 110, and so on.
Data may stream into the read module 241 via a read buffer
251. The read buffer 251 may read the contents of one or more
page read buffers of the solid-storage storage elements
116A-N within the solid-state storage array 115A-N of one of
the banks 119A-N. The read buffer 251 may comprise one or
more synchronization buffers configured to synchronize a
clock domain ofthe adaptive storage module 113 with a clock
domain of the solid-state storage medium 110 (and/or bus
127).

The adaptive read module 247 may be configured to recon-
struct one or more data segments from the contents of the read
buffer 251. Reconstructing the data segments may comprise
recombining and/or reordering contents of the read buffer
(e.g., ECC codewords) read from various columns 118 in
accordance with a layout of the data on the solid-state storage
arrays 115A-N as indicated by the storage metadata 135. In
some embodiments, reconstructing the data may comprise
stripping data associated with one or more columns 118 from
the read buffer, reordering data of one or more columns 118,
and so on.

The read module 241 may comprise an ECC read module
245 configured to detect and/or correct errors in data read
from the solid-state storage medium 110 using, inter alia, the
ECC encoding of the data (e.g., as encoded by the ECC write
module 246), parity data (e.g., using parity substitution), and
so on. As disclosed above, the ECC encoding may be capable
of detecting and/or correcting a pre-determined number of bit
errors, in accordance with the strength of the ECC encoding.
The ECC read module 245 may be capable of detecting more
bit errors than can be corrected.

The ECC read module 245 may be configured to correct
any “correctable” errors using the ECC encoding. In some
embodiments, the ECC read module 245 may attempt to
correct errors that cannot be corrected by use of the ECC
encoding using other techniques, such as parity substitution,
or the like. Alternatively, or in addition, the ECC read module
245 may attempt to recover data comprising uncorrectable
errors from another source. For example, in some embodi-
ments, data may be stored in a RAID configuration. In
response to detecting an uncorrectable error, the ECC read
module 245 may attempt to recover the data from the RAID,
or other source of redundant data (e.g., a mirror, backup copy,
or the like).

In some embodiments, the ECC read module 245 may be
configured to generate an interrupt in response to reading data
comprising uncorrectable errors. The interrupt may comprise
a message indicating that the requested data is in error, and
may indicate that the ECC read module 245 cannot correct the
error using the ECC encoding. The message may comprise
the data that includes the error (e.g., the “corrupted data”).

The interrupt may be caught by the storage module 130 or
other process. In some embodiments, the interrupt is received
by the data recovery module 170, which, in response, may be
configured to reconstruct the data using parity substitution, or
other reconstruction technique, as disclosed herein. Parity
substitution may comprise iteratively replacing portions of
the corrupted data with a “parity mask™ (e.g., all ones) until a

30

40

45

14

parity calculation associated with the data is satisfied. The
masked data may comprise the uncorrectable errors, and may
be reconstructed using other portions of the data in conjunc-
tion with the parity data. Parity substitution may further com-
prise reading one or more ECC codewords from the solid-
state storage array 115A-N (in accordance with an adaptive
data structure layout on the array 115), correcting errors
within the ECC codewords (e.g., decoding the ECC code-
words), and reconstructing the data by use of the corrected
ECC codewords and/or parity data. In some embodiments,
the corrupted data may be reconstructed without first decod-
ing and/or correcting errors within the ECC codewords.

Alternatively, data recovery module 170 may be config-
ured to replace the corrupted data with another copy of the
data, such as a backup or mirror copy, and then may use the
replacement data of the requested data packet or return it to
the read module 241. In another embodiment, the storage
module 130 stores data in a RAID configuration, from which
the corrupted data may be recovered, as described above.

As depicted in FIG. 2, the solid-state storage medium 110
may be arranged into a plurality of independent banks 119A-
N. Each bank may comprise a plurality of solid-state storage
elements arranged into respective solid-state storage arrays
115A-N, as disclosed above. The banks 119A-N may be
configured to operate independently; the adaptive storage
module 113 may configure a first bank 119A to perform a first
storage operation while a second bank 119B is configured to
perform a different storage operation. The adaptive storage
module 113 may further comprise a bank controller 252 con-
figured to selectively route data and/or commands between
the adaptive storage module 113 and the banks 119A-N. In
some embodiments, adaptive storage module 113 may be
configured to read data from a bank 119A while filling the
write buffer 250 for storage on another bank 119B and/or may
interleave one or more storage operations between one or
more banks 119A-N. Further embodiments of multi-bank
storage operations and data pipelines are disclosed in U.S.
Patent Application Publication No. 2008/0229079 (U.S.
patent application Ser. No. 11/952,095), entitled “Apparatus,
System, and Method for Managing Commands of Solid-State
Storage Using Bank Interleave,” filed Dec. 6, 2007 for David
Flynn et al., which is hereby incorporated by reference in its
entirety.

As disclosed above, the groomer module 138 may be con-
figured to reclaim storage resources of the solid-state storage
medium 110. The groomer module 138 may operate as an
autonomous, background process, which may be suspended
and/or deferred while other storage operations are in process.
The log storage module 137 and groomer module 138 may
manage storage operations so that data is systematically
spread throughout a physical address space of the solid-state
storage medium 110, which may improve performance and
data reliability and avoid overuse and underuse of any par-
ticular storage locations, thereby lengthening the useful life
of the solid-state storage medium 110 (e.g., wear-leveling,
etc.). Accordingly, in some embodiments, the storage module
130 treats the physical address space of the solid-state storage
medium 110 as a cycle. Data is incrementally appended to the
solid-state storage medium 110 from an initial append point,
which may correspond to a particular physical address within
one or more of the banks 119A-N (e.g., physical address 0 of
bank 119A). Upon reaching the end of the physical address
space (e.g., physical address N of bank 119N), the append
point reverts to the initial position (or next available storage
location).

Operations to overwrite and/or modify data stored on the
solid-state storage medium 110 may be performed “out-of-

US 9,116,823 B2

15

place.” The obsolete version of the data may remain on the
storage medium 110 while the updated version of the data
may be appended at the append point. Similarly, an operation
to delete, erase, or TRIM data from the solid-state storage
medium 110 may comprise indicating that the data is invalid
(e.g., does not need to be retained on the solid-state storage
medium 110). Marking data as invalid may comprise modi-
fying a mapping between the logical identifier of the data and
the physical address of the invalid data, marking the physical
address as invalid in a reverse index, or the like.

The groomer module 138 may be configured to select
selections of the solid-state storage medium 110 for recovery.
As used herein, a “section” of the solid-state storage medium
110 may include, but is not limited to: an erase block, a logical
erase block, a die, a plane, one or more pages, a portion of a
solid-state storage element 116 A-Y, a portion of a row 117 of
a solid-state storage array 115, or the like. A section may be
selected for grooming in response to various criteria, which
may include, but are not limited to: age criteria (e.g., data
refresh), error metrics, reliability metrics, wear metrics,
resource availability criteria, an invalid data threshold, or the
like. A grooming or storage recovery operation may comprise
relocating valid data on the section (if any). The operation
may further comprise preparing the section for reuse, which
may comprise erasing the section, marking the section with a
sequence indicator, such as the sequence indicator 318, and/
or placing the section in a queue of storage sections that are
available to store data. The groomer module 138 may be
configured to schedule grooming operations with other stor-
age operations and/or requests. In some embodiments, the
adaptive storage module 113 may comprise a groomer bypass
(not shown) configured to relocate data from a storage section
by transferring data read from the section from the read mod-
ule 241 directly into the write module 240 without being
routed out of the adaptive storage module 113.

The adaptive write module 248 may be further configured
to manage out-of-service conditions on the solid-state storage
medium 110. As used herein, a section of the solid-state
storage medium 110 that is “out-of-service” (OOS) refers to
a section that is not currently being used to store valid data.
The storage module 130 may be configured to monitor stor-
age operations performed on the solid-state storage medium
110 and/or actively scan the solid-state storage medium 110
to identify sections that should be taken OOS. The storage
metadata 135 may comprise OOS metadata that identifies
OOS sections of the solid-state storage medium 110. The
adaptive write module 248 may be configured to avoid OOS
section by, inter alia, stream padding (and/or nonce) data to
the write buffer such that padding data will map to the iden-
tified OOS sections. In some embodiments, the adaptive stor-
age module 113 may be configured to manage OOS condi-
tions by replacing OOS sections of the solid-state storage
medium 110 with replacement sections. Alternatively, or in
addition, a hybrid OOS approach may be employed. The
padding approach to managing OOS conditions may be used
in portions of the solid-state storage medium 110 comprising
a relatively small number of OOS storage divisions; as the
number of OOS sections increases, the solid-state adaptive
storage module 113 may replace one or more of the OOS
sections with replacements. Further embodiments of appara-
tus, systems, and methods for detecting and/or correcting data
errors, and managing OOS conditions, are disclosed in U.S.
Patent Application Publication No. 2009/0287956 (U.S.
application Ser. No. 12/467,914), entitled “Apparatus, Sys-
tem, and Method for Detecting and Replacing a Failed Data
Storage,” filed May 18, 2009, and U.S. Patent Application
Publication No. 2013/0019072 (U.S. application Ser. No.

10

15

20

25

30

35

40

45

50

55

60

65

16
13/354,215), entitled “Apparatus, System, and Method for
Managing Out-of-Service Conditions,” filed Jan. 19, 2012 for
John Strasser et al., each of which is hereby incorporated by
reference in its entirety.

As disclosed above, the solid-state storage medium 110
may comprise one or more solid-state storage arrays 115A-N.
A solid-state storage array 115A-N may comprise a plurality
of independent columns 118 (respective solid-state storage
elements 116A-Y), which may be coupled to the adaptive
storage module 113 in parallel via the bus 127. Accordingly,
storage operations performed on an array 115A-N may be
performed on each of the solid-state storage elements
116 A-Y comprising the array 115A-N. Performing a storage
operation on an array 115A-N may comprise performing the
storage operation on each of the plurality of solid-state stor-
age elements 116 comprising the array 115A-N: a read opera-
tion may comprise reading a physical storage unit (e.g., page)
from a plurality of solid-state storage elements 116A-Y; a
program operation may comprise programming a physical
storage unit (e.g., page) on a plurality of solid-state storage
elements 116 A-Y; an erase operation may comprise erasing a
section (e.g., erase block) on a plurality of solid-state storage
elements 116 A-Y; and so on. Accordingly, a program opera-
tion may comprise the write module 240 streaming data to
program buffers of a plurality of solid-state storage elements
116 A-Y (via the write buffer 250 and bus 127) and, when the
respective program bufters are sufficiently full, issuing a pro-
gram command to the solid-state storage elements 116A-Y.
The program command may cause one or more storage units
on each of' the storage elements 116 A-Y to be programmed in
parallel.

FIG. 5A depicts one embodiment 500 of a solid-state stor-
age array 115. As disclosed above, the solid-state storage
array 115 may comprise a plurality of independent columns
118, each of which may correspond to a respective solid-state
storage element 116A-Y. The embodiment of a solid-state
storage array 115 depicted in FIG. 5A comprises 25 columns
118 (e.g., solid-state storage element 0 116 A through solid-
state storage element 24 116Y). The solid-state storage ele-
ments 116A-Y comprising the array may be communica-
tively coupled to the adaptive storage module 113 in parallel
by the bus 127. The bus 127 may be capable of communicat-
ing data, address, and/or control information to each of the
solid-state storage elements 116 A-Y. The parallel connection
may allow the adaptive storage module 113 to manage the
solid-state storage elements 116 A-Y as a single, logical stor-
age element (array 115), as described above.

The solid-state storage elements 116 A-Y may be parti-
tioned into sections, such as physical storage divisions 530 or
physical erase blocks. Each erase block may comprise a plu-
rality of physical storage units 532, such as pages. The physi-
cal storage units 532 within a physical storage division 530
may be erased as a group. Although FIG. 5A depicts a par-
ticular partitioning scheme, the disclosed embodiments are
not limited in this regard, and could be adapted to use solid-
state storage elements 116A-Y partitioned in any suitable
manner.

As depicted in FIG. 5A, the columns 118 of the array 115
may correspond to respective solid-state storage elements
116 A-Y. Accordingly, the array 115 of FIG. 5A comprises 25
columns 118. Rows of the array 117 may correspond to physi-
cal storage units 532 and/or 530 of a plurality of the columns
118.

FIG. 5B is a block diagram 501 of another embodiment of
a solid-state storage array 115. As disclosed above, the solid-
state storage array 115 may comprise a plurality of rows 117,
which may correspond to storage units on a plurality of dif-

US 9,116,823 B2

17

ferent columns 118 within the array 115. The rows 117 of the
solid-state storage array 115 may include logical storage divi-
sions 540, which may comprise physical storage divisions on
a plurality of the solid-state storage eclements 116A-Y. In
some embodiments, a logical storage division 540 may com-
prise a logical erase block, comprising physical erase blocks
on each of the solid-state storage elements 116A-Y in the
array 115. A logical page 542 may comprise physical storage
units (e.g., pages) on a plurality of the solid-state storage
elements 116A-Y.

Storage operations performed on the solid-state storage
array 115 may operate on multiple solid-state storage ele-
ments 116A-Y: an operation to program data to a logical
storage unit 542 may comprise programming data to each of
25 physical storage units (e.g., one storage unit per non-
volatile storage element 116 A-Y); an operation to read data
from a logical storage unit 542 may comprise reading data
from 25 physical storage units (e.g., pages); an operation to
erase a logical storage division 540 may comprise erasing
twenty-five physical storage divisions (e.g., erase blocks);
and so on. Since the columns 118 are independent, storage
operations may be performed across different sets and/or
portions of the array 115. For example, a read operation on the
array 115 may comprise reading data from physical storage
unit 532 at a first physical address of solid-state storage ele-
ment 116 A and reading data from a physical storage unit 532
at a different physical address of one or more other solid-state
storage elements 116B-N.

Arranging non-volatile storage elements 116A-Y into a
solid-state storage array 115 may be used to address certain
properties of the solid-state storage medium 110. Some
embodiments may comprise an asymmetric solid-state stor-
age medium 110; it may take longer to program data onto the
solid-state storage elements 116 A-Y than it takes to read data
therefrom (e.g., 10 times as long). Moreover, in some cases,
data may only be programmed to physical storage divisions
530 that have first been initialized (e.g., erased). Initialization
operations may take longer than program operations (e.g., 10
times as long as a program, and by extension 100 times as
long as a read operation). Managing groups of solid-state
storage elements 116A-Y in an array 115 (and/or interleaved
banks 119A-N as disclosed herein) may allow the storage
module 130 to address the asymmetric properties of the solid-
state storage medium 110. In some embodiments, the asym-
metry in read, program, and/or erase operations is addressed
by performing these operations on multiple solid-state stor-
age elements 116A-Y in parallel. In the embodiment depicted
in FIG. 5B, programming asymmetry may be addressed by
programming 25 storage units in a logical storage unit 542 in
parallel. Initialization operations may also be performed in
parallel. Physical storage divisions 530 on each of the solid-
state storage elements 116 A-Y may be initialized as a group
(e.g., as logical storage divisions 542), which may comprise
erasing 25 physical erase blocks in parallel.

In some embodiments, portions of the solid-state storage
array 115 may be configured to store data and other portions
of the array 115 may be configured to store error detection
and/or recovery information. Columns 118 used for data stor-
age may be referred to as “data columns™ and/or “data solid-
state storage elements.” Columns used to store data error
detection and/or recovery information may be referred to as a
“parity column” and/or “recovery column.” The array 115
may be configured in an operational mode in which one ofthe
solid-state storage elements 116Y is used to store parity data,
whereas other solid-state storage elements 116A-X are used
to store data. Accordingly, the array 115 may comprise data
solid-state storage elements 116A-X and a recovery solid-

10

15

20

25

30

35

40

45

50

55

60

65

18

state storage element 116Y. In this operational mode, the
effective storage capacity of the rows (e.g., logical pages 542)
may be reduced by one physical storage unit (e.g., reduced
from 25 physical pages to 24 physical pages). As used herein,
the “effective storage capacity” of a storage unit refers to the
number of storage units or divisions that are available to store
data and/or the total amount of data that can be stored on a
logical storage unit. The operational mode described above
may be referred to as a “24+1” configuration, denoting that 24
physical storage units 532 are available to store data, and one
of the physical storage units 532 is used for parity. The dis-
closed embodiments are not limited to any particular opera-
tional mode and/or configuration, and could be adapted to use
any number of the solid-state storage elements 116A-Y to
store error detection and/or recovery data.

As disclosed above, the adaptive storage module 113 may
be configured to interleave storage operations between a plu-
rality of solid-state storage arrays 115A-N of independent
banks 119A-N, which may further ameliorate asymmetry
between erase, program, and read operations on the solid-
state storage medium 110. FIG. 5C depicts one embodiment
of an adaptive storage module 113 configured to manage
logical erase blocks 540 that span multiple arrays 115A-N of
multiple banks 119A-N. Each bank 119A-N may comprise
one or more solid-state storage arrays 115A-N, which, as
disclosed herein, may comprise a plurality of solid-state stor-
age elements 116 A-Y coupled in parallel by a respective bus
127A-N. The adaptive storage module 113 may be configured
to perform storage operations on the storage elements
116 A-Y ofthe arrays 119A-N in parallel and/or in response to
a single command and/or signal.

Some operations performed by the adaptive storage mod-
ule 113 may cross bank boundaries. The adaptive storage
module 113 may be configured to manage groups of logical
erase blocks 540 that include erase blocks of multiple arrays
115A-N within different respective banks 119A-N. Each
group of logical erase blocks 540 may comprise erase blocks
531A-N on each of the arrays 115A-N. The erase blocks
531A-N comprising the logical erase block group 540 may be
erased together (e.g., in response to a single erase command
and/or signal or in response to a plurality of separate erase
commands and/or signals). Performing erase operations on
logical erase block groups 540 comprising large numbers of
erase blocks 531A-N within multiple arrays 115A-N may
further mask the asymmetric properties of the solid-state
storage medium 110, as disclosed above.

The adaptive storage module 113 may be configured to
perform some storage operations within boundaries of the
arrays 115A-N and/or banks 119A-N. In some embodiments,
the read, write, and/or program operations may be performed
within rows 117 of the solid-state storage arrays 115A-N
(e.g., on logical pages 542A-N within arrays 115A-N of
respective banks 119A-N). As depicted in FIG. 5C, the logical
pages 542A-N of the arrays 115A-N may not extend beyond
single arrays 115A-N and/or banks 119A-N. The log storage
module 137 and/or bank interleave module 252 may be con-
figured to append data to the solid-state storage medium 110
by interleaving and/or scheduling storage operations sequen-
tially between the arrays 115A-N of the banks 119A-N.

FIG. 5D depicts one embodiment of storage operations that
are interleaved between solid-state storage arrays 115A-N of
respective banks 119A-N. In the FIG. 5D embodiment, the
bank interleave module 252 is configured to interleave pro-
gramming operations between logical pages 542A-N (rows
117) of the arrays 115A-N within the banks 119A-N. As
disclosed above, the write module 240 may comprise a write
buffer 250, which may have sufficient capacity to fill program

US 9,116,823 B2

19

buffers of one or more logical pages 542A-N of an array
115A-N. In response to filling the write buffer 250 (e.g.,
buffering data sufficient to fill a portion of a logical page
542A-N), the adaptive storage module 113 may be configured
to stream the contents of the write buffer 250 to program
buffers of the solid-state storage elements 116A-Y compris-
ing one of the banks 119A-N. The solid-state adaptive storage
module 113 may then issue a program command and/or sig-
nal to the solid-state storage array 115A-N to store the con-
tents of the program buffers to a specified logical page 542 A-
N. The log storage module 137 and/or bank interleave module
252 may be configured to provide control and addressing
information to the solid-state storage elements 116 A-Y ofthe
array 115A-N using a bus 127A-N, as disclosed above.

The bank interleave module 252 may be configured to
append data to the solid-state storage medium 110 by pro-
gramming data to the arrays 115A-N in accordance with a
sequential interleave pattern. The sequential interleave pat-
tern may comprise programming data to a first logical page
(LP_0) of array 115A within bank 119A, followed by the first
logical page (LP_0) of array 115B within the next bank 119B,
and so on, until data is programmed to the first logical page
LP_0ofeacharray 115A-N within each of the banks 119A-N.
As depicted in FIG. 5D, data may be programmed to the first
logical page LP_0 of array 115A in bank 119A in a program
operation 243 A. The bank interleave module 252 may then
stream data to the first logical page (LP_0) of the array 115B
in the next bank 119B. The data may then be programmed to
LP_0 of array 115B bank 119B in a program operation 243B.
The program operation 243B may be performed concurrently
with the program operation 243 A on array 115A of bank 19A;
the adaptive storage module 113 may stream data to array
115B and/or issue a command and/or signal for the program
operation 243B, while the program operation 243 A is being
performed onthe array 115A. Data may be streamed to and/or
programmed on the first logical page (LP_0) of the arrays
115C-N of the other banks 119C-N following the same
sequential interleave pattern (e.g., after data is streamed and/
or programmed to LP_0 of array 115A of bank 119B, data is
streamed and/or programmed to LP_0 of array 115C of bank
119C in program operation 243C, and so on). Following the
programming operation 243N on LP_0 of array 115N within
the last bank 119N, the bank interleave controller 252 may be
configured to begin streaming and/or programming data to
the next logical page (LP_1) of array 115A within the first
bank 119A, and the interleave pattern may continue accord-
ingly (e.g., program LP_1 ofarray 115B bank 119B, followed
by LP_1 of array 115C bank 119C through LP_1 of array
115N bank 119N, followed by LP_2 of array 115A bank
119A, and so on).

Sequentially interleaving programming operations as dis-
closed herein may increase the time between concurrent pro-
gramming operations on the same array 115A-N and/or bank
119A-N, which may reduce the likelihood that the adaptive
storage module 113 will have to stall storage operations while
waiting for a programming operation to complete. As dis-
closed above, programming operations may take significantly
longer than other operations, such as read and/or data stream-
ing operations (e.g., operations to stream the contents of the
write buffer 250 to an array 115A-N via the bus 127A-N). The
interleave pattern of FIG. 5D may be configured to avoid
consecutive program operations on the same array 115A-N
and/or bank 119 A-N; programming operations on a particular
array 115A-N may be separated by N-1 programming opera-
tions on other banks (e.g., programming operations on array
115A are separated by programming operations on arrays
115A-N). As such, programming operations on array 119A

5

10

15

20

25

30

40

45

50

55

60

65

20

are likely to be complete before another programming opera-
tion needs to be performed on the array 119A.

As depicted in FIG. 5D, the interleave pattern for program-
ming operations may comprise programming data sequen-
tially across rows (e.g., logical pages 542A-N) of a plurality
of arrays 115A-N. As depicted in FIG. 5E, the interleave
pattern may result in interleaving programming operations
between arrays 115A-N of banks 119A-N, such that the erase
blocks of each array 115A-N (erase block groups EBG_0-N)
are filled at the same rate. The sequential interleave pattern
programs data to the logical pages of the first erase block
group EBG_0) in each array 115A-N before programming
data to logical pages LP_0 through LP_N of the next erase
block group (EBG_1), and so on (e.g., wherein each erase
block comprises 0-N pages). The interleave pattern continues
until the last erase block group EBG_N is filled, at which
point the interleave pattern continues back at the first erase
block group EBG_0.

The erase block groups of the arrays 115A-N may, there-
fore, be managed as logical erase blocks 540 A-N that span the
arrays 115A-N. Referring to FIG. 5C, a logical erase block
group 540 may comprise erase blocks 531 A-N on each ofthe
arrays 115A-N within the banks 119A-N. As disclosed above,
managing groups of erase blocks (e.g., logical erase block
group 540) may comprise erasing each of the erase blocks
531A-N included in the group 540. In the FIG. 5E embodi-
ment, erasing the logical erase block group 540A may com-
prise erasing EBG_0 of arrays 115A-N in banks 119A-N,
erasing a logical erase block group 540B may comprise eras-
ing EBG_1 of arrays 115A-N in banks 119 A-N, erasing logi-
cal erase block group 540C may comprise erasing EBG_2 of
arrays 115A-N in banks 119A-N, and erasing logical erase
block group 540N may comprise erasing EBG_N of arrays
115A-N in banks 119A-N. Other operations, such as groom-
ing, recovery, and the like may be performed at the granularity
of the logical erase block groups 540A-N; recovering the
logical erase block group 540A may comprise relocating
valid data (if any) stored on EBG_0 on arrays 115A-N in
banks 119A-N, erasing the erase blocks of each EBG_0 in
arrays A-N, and so on. Accordingly, in embodiments com-
prising four banks 119A-N, each bank 119A-N comprising a
respective solid-state storage array 115A-N comprising 25
storage elements 116A-Y, erasing, grooming, and/or recov-
ering a logical erase block group 540 comprises erasing,
grooming, and/or recovering one hundred physical erase
blocks 530. Although particular multi-bank embodiments are
described herein, the disclosure is not limited in this regard
and could be configured using any multi-bank architecture
comprising any number of banks 119A-N of arrays 115A-N
comprising any number of solid-state storage elements 116 A-

Referring back to FIG. 1, the storage module 130 may be
configured to store data segments in one or more different
arrangements and/or layouts within a solid-state storage array
115. In some embodiments, data may be stored “horizon-
tally” within rows 117 of the array 115 (e.g., horizontally
within logical storage units 542 of the array 115). Accord-
ingly, a datastructure, such as an ECC codeword or packet,
may be spread across a plurality of the storage elements
116 A-Y comprising the array 115. In some embodiments,
data may be stored horizontally within one or more “chan-
nels” within the array 115. As used herein, a channel refers to
a subset of one or more independent columns 118 of the array
115. Data may be arranged horizontally within the channels.
An array 115 comprising N columns 118 used for storing data
may be divided into a configurable number of independent
channels X, each comprising Y columns 118 of the array 115.

US 9,116,823 B2

21

Inthe FIG. 1 embodiment having a “24+1” configuration that
comprises 24 columns 118 for storing data, the channel con-
figurations may include, but are not limited to: 24 channels
each comprising a single column 118; 12 channels each com-
prising two solid-state storage elements; eight channels each
comprising three solid-state storage elements; six channels
each comprising six columns 118; and so on. In some
embodiments, the array 115 may be divided into heteroge-
neous channels, such as a first channel comprising 12 col-
umns 118 and six other channels each comprising two col-
umns 118.

FIG. 6A is ablock diagram of one embodiment of a system
600 for adaptive data storage. The system 600 may comprise
a solid-state storage array 115 comprising 25 solid-state stor-
age elements 116 A-Y operating in a “24+1” configuration, in
which 24 of'the solid-state storage elements 116 A-X are used
to store data, and one storage element (116Y) is used to store
parity data.

The write module 240 may comprise a packet module 242
configured to generate data packets comprising data for stor-
age on the array 115, as disclosed above. In the FIG. 6A
embodiment, the packet module 242 is configured to format
data into a packet format 610, comprising a packet data seg-
ment 612 and metadata 614 (e.g., header). The header 614
may comprise a logical identifier associated with the packet
data segment 612, a sequence number, or the like, as disclosed
above. In the FIG. 6 A embodiment, the packet module 242 is
configured to generate packets 610 of a fixed size (520-byte
packet data segment 612 and 8 bytes of metadata 614).

The ECC write module 246 is configured to generate ECC
datastructures (ECC codewords 620) comprising portions of
one or more packets 610 as disclosed above. The ECC code-
words 620 may be of a fixed size. In the FIG. 6A example,
each ECC codeword 620 comprises 224 bytes of packet data
and a 16-byte error-correcting code or syndrome. Although
particular sizes and/or configurations of packets 610 and ECC
codewords are disclosed herein, the disclosure is not limited
in this regard and could be adapted to use any size packets 610
and/or ECC codewords 620. Moreover, in some embodi-
ments, the size of the datastructures (e.g., packets 610 and/or
ECC codewords 620) may vary. For example, the size and/or
contents of the packets 610 and/or ECC codewords 620 may
be adapted according to out-of-service conditions, as dis-
closed above.

Data of the packet 610A may be included in a plurality of
ECC codewords 620 (e.g., ECC codewords 621, 622, and
623). The ECC codeword 621 may comprise 224 bytes of the
packet 610A, the ECC codeword 622 may comprise another
224 bytes of the packet 610A, and the ECC codeword 623
may comprise the remaining 72 bytes of the packet 610A and
152 bytes of the next packet 610B.

The adaptive write module 248 may be configured to lay-
out data horizontally within rows of the array 115. The adap-
tive write module 248 may be configured to buffer and/or
arrange data segments (e.g., the ECC codewords 621, 622,
and 623) into 24-byte segments. The adaptive write module
248 may be capable of buffering one or more ECC codewords
620. For example, the write buffer 320 may comprise 10
24-byte rows, which is sufficient to buffer a full 240-byte
ECC codeword 620.

The adaptive write module 248 may be further configured
to stream 24-byte segments to a parity module 637, which
may be configured to generate a parity byte for each 24-byte
segment. The adaptive write module 248 streams the resulting
25 bytes to the array 115 via the bank controller 252 and bus
127 (and/or write buffer 250, as disclosed above). The adap-
tive storage module 113 may be configured to stream data

10

15

20

25

30

35

40

45

50

55

60

65

22

from the adaptive write module 248 to program buffers of the
solid-state storage array 115 (e.g., stream to a program buffer
of one of the solid-state storage elements 116A-Y). Accord-
ingly, each cycle of bus 127 may comprise transferring a byte
to the program buffer of a respective column 118; solid-state
storage elements 116A-X receive data bytes and solid-state
storage element 116Y receives the parity byte generated by
the parity module 637. Data of the ECC codewords 620 may
be byte-wise interleaved between the solid-state storage ele-
ments 116A-X; each solid-state storage element 116A-X
receives 10 bytes of each 240-byte ECC codeword 620.
Accordingly, the adaptive write module 248 may be config-
ured to stream “data rows” 667 to the solid-state storage array
115. As used herein, a data row 667 refers to a data set
comprising data for each of a plurality of columns 118 within
the array 115. The data row 667 may comprise a byte of data
foreach column 0-23. The data row 667 may further comprise
a parity byte corresponding to the data bytes (e.g., a parity
byte corresponding to the data bytes for columns 0-23). The
data row 667 may be streamed to respective program buffers
of'the solid-state storage elements 116A-Y on the bus 127. In
the horizontal data configuration of FIG. 6A, streaming a
240-byte ECC codeword 620 to the array 115 may comprise
streaming 10 separate data rows 667 to the array 115, each
data row comprising 24 data bytes (one for each data solid-
state storage element 116A-X) and a corresponding parity
byte.

The storage location or offset 636 of the packet 610A
within the logical page 650A may be determined based upon
the horizontal layout of the data packet 610A. The offset 636
may identify the location of the ECC codewords 621, 622,
and/or 623 comprising the packet 610A (and/or may identify
the location of the last ECC codeword 623 comprising data of
the packet 610A). Accordingly, in some embodiments, the
offset may be relative to one or more datastructures on the
array 115 (e.g., a packet offset and/or ECC codeword offset).
Another offset 638 may identify the location of the last ECC
codeword of a next packet 610 (e.g., packet 610B), and so on.

As depicted in FIG. 6A, each of the ECC codewords 621,
622, and 623 are horizontally spread across the storage ele-
ments 116A-Y comprising the logical page 650A (e.g., 10
bytes of the ECC codewords 621, 622, and 623 are stored on
each solid-state storage element 116A-X). Accessing the
packet 610A may, therefore, comprise accessing each of the
ECC codewords 621, 622, and 623 (and each of the storage
elements 116A-X).

FIG. 6B depicts one embodiment of horizontal, adaptive
data storage 601. The FIG. 6B embodiment depicts a hori-
zontal layout 601 of the ECC codeword 621 on the array 115
of FIG. 6 A. Data D, denotes a first byte of the ECC codeword
621, and data D, 4, denotes the last byte (byte 240) of the ECC
codeword 621. As illustrated in FIG. 6B, each column 118 of
the solid-state storage array 115 comprises 10 bytes of the
ECC codeword 621, and the data of the ECC codeword 621 is
horizontally spread across a row 117 of the array 115 (e.g.,
horizontally spread across solid-state storage elements
116 A-X of the array 115). FIG. 6B also depicts a data row 667
as streamed to (and stored on) the solid-state storage array
115. As illustrated in FIG. 6B, the data row 667 comprises
bytes 0 through 23 of the ECC codeword D, each stored on a
respective one of the columns 118. The data row 667 further
comprises a parity byte 668 corresponding to the contents of
the data row 667 (bytes D, through D,.).

Since the data is spread across the columns 0-23 (solid-
state storage elements 116A-X), reading data of the ECC
codeword 621 may require accessing a plurality of columns
118. Moreover, the smallest read unit may be an ECC code-

US 9,116,823 B2

23

word 620 (and/or packet 610). Reading a packet 310 stored
horizontally on the solid-state storage array 115 may, there-
fore, incur significant overhead. Referring back to FIG. 6A,
reading the packet 610A may require transferring data of the
logical page 650A into respective read buffers of the storage
elements 116A-X (e.g., storage elements 0 through 23).
Transferring the contents of a page into the read buffer may
incur a latency of Tr (read latency). As used herein, read time
or read latency Tr refers to the time needed to transfer the
contents of a physical storage unit (e.g., physical page) into a
read buffer of a solid-state storage element 116 A-Y. In the
FIG. 6 A embodiment, the read time Tr may, therefore, referto
the time required to transfer a physical page of each of the
solid-state storage elements 116A-X into a respective read
buffer. Accordingly, the read time Tr of a logical storage unit
650 may correspond to the “slowest” read time of the con-
stituent storage elements 116A-X.

In the FIG. 6A embodiment, each ECC codeword com-
prises 240 bytes, and each packet comprises 520 bytes. The
size of a logical page, however, may be much larger. For
example, each page may comprise 2 kb (or more), and as
such, a logical page may comprise 48 kb. Accordingly, read-
ing a packet may require transferring 48 kb of data to access
520 bytes (or less) of data.

Upon transferring the data into the respective read buffers,
data may be streamed into the read module 241 by way of the
24-byte storage bus 127 (and bank controller 252). The
stream time (Ts) may refer to the time required to stream the
ECC codeword 620 (or packet 610) into the pipeline 241. In
the horizontal layout of FIG. 6A, the stream time Ts may be
10 cycles of the bus 127 because, as disclosed above, each
column 118 comprises 10 bytes of the ECC codeword 620.
Therefore, although the horizontal arrangement incurs a high
retrieval overhead, the stream overhead is relatively low (only
10 clock cycles).

Given the data arrangement within the solid-state storage
array 115, and the latencies disclosed herein, an input/output
operations per second (IOPS) metric may be quantified. The
1OPS to read an ECC codeword 620 may be expressed as:

C Eq. 1
IOPS, = ————
(Tr+1Ts)

In Equation 1, Tr is the read time of the solid-state storage
elements 116A-Y, Ts is the stream time (e.g., the clock speed
times the number of cycles required), and C is the number of
independent columns used 118 to store the data. Equation 1
may be scaled by the number of independent banks 119A-N
available to the adaptive storage module 113. In the horizon-
tal data structure layout of FIGS. 6 A and 6B, Equation 1 may
be expressed as:

24
(Tr+10%Sc)

Eq. 2
10PS, = 4

In Equation 2, the number of columns is 24, and Sc is the
cycletime ofthe bus 127. The cycle time is scaled by 10 since,
as disclosed above, a horizontal 240-byte ECC codeword 620
may be streamed in 10 cycles of the bus 127.

The storage module may be configured to store data in
different configurations, layouts, and/or arrangements on the
solid-state storage medium 110. As disclosed above, in some
embodiments, the adaptive write module 248 is configured to
arrange data within respective independent columns, each

30

35

40

45

55

24

comprising a subset of the columns 118 of the solid-state
storage array 115 (e.g., subsets of the solid-state storage
elements 116A-Y). Alternatively, or in addition, the adaptive
write module 248 may be configured to store data vertically
within respective “vertical stripes.” The vertical stripes may
have a configurable depth, which may be a factor of the page
size of the solid-state storage elements 116A-Y comprising
the array 115.

FIG. 6C depicts another embodiment of a system 602 for
adaptive data layout. In the FIG. 6C embodiment, the adap-
tive write module 248 may be configured to store data in a
vertical layout within the array 115. The adaptive write mod-
ule 248 may be configured to buffer ECC codewords 620 for
storage on respective columns 118 of the solid-state storage
array 115 (including the ECC codewords 621, 622, and 623
disclosed herein). The ECC codewords 620 may be streamed
to respective columns 118 of the array through a write buffer
250 (not shown). Accordingly, each cycle of the bus 127 may
comprise streaming a byte of a different respective ECC
codeword 610 to each of the columns 116 A-X. The adaptive
write module 248 may be further configured to generate par-
ity data 637 corresponding to the different ECC codewords
610 for storage on a parity column (e.g., solid-state storage
element 116Y). Accordingly, each stream cycle may com-
prise streaming a byte of a respective ECC codeword 610 to a
respective column 118 along with a corresponding parity byte
to a parity column 118.

As depicted in FIG. 6C, the adaptive write module 248 may
be configured to bufter and rotate ECC codewords for vertical
storage within respective columns 118 of the array 115: the
ECC codeword 621 may stream to (and be stored vertically
on) column 0 (solid-state storage element 116A), the ECC
codeword 622 may be stored vertically on column 1 (solid-
state storage element 116B), the ECC codeword 623 may be
stored vertically on column 2 (solid-state storage element
116C), and so on (the ECC codeword 629 may be stored
vertically in the column 23, solid-state storage element
116X). Column 24 (solid-state storage element 116Y) may be
configured to store parity data corresponding to the ECC
codewords, as disclosed above. Alternatively, the parity col-
umn 24 may be used to store additional ECC codeword data.

In some embodiments, the adaptive storage module 113
may comprise a plurality of packet modules 242 and/or ECC
write modules 246 (e.g., multiple, independent write modules
240) configured to operate in parallel. Data of the parallel
write modules 240 may flow into the adaptive write module
248 in a checkerboard pattern such that the data is arranged in
the vertical format disclosed herein.

The vertical arrangement of FIG. 6C may store data of each
ECC codeword 620 within a respective column 118 of the
array 115. Accordingly, each data row 667 streamed to the
array 115 may comprise a byte corresponding to a respective
ECC codeword 620. The data row 667 may further comprise
a corresponding parity byte; the data rows 667 may be con-
figured to stream data of respective ECC codewords 660 to
program buffers of respective data columns (e.g., solid-state
storage elements 116 A-Y), and a corresponding parity byte to
a parity column (e.g., column 116Y). Accordingly, the data
rows 667 may be stored with byte-wise parity information,
each byte of a row 667, and stored within the solid-state
storage elements 116A-X, may be reconstructed by use of the
other bytes in the row 667 (and stored in other solid-state
storage elements 116 A-X) and the corresponding parity byte.

FIG. 6D depicts one embodiment of vertical, adaptive data
storage 603. The FIG. 6D embodiment illustrates a vertical
storage configuration within the solid-state storage array 115.

US 9,116,823 B2

25

As illustrated in FIG. 6D, data D, through D,;, of the ECC
codeword 621 is stored vertically in column 0, Data O,
through O,;, of ECC codeword 622 is stored vertically in
column 1, Data Q, through Q,;, of ECC codeword 623 is
stored vertically in column 2, and data Z, through Z,,, of
ECC codeword 629 is stored vertically in column 23. The
vertical storage configuration of other data of other ECC
codewords 620 (R-Y) is also depicted.

FIG. 6D also depicts one embodiment of a data row 667 as
streamed to, and stored on, the solid-state storage array 115.
As illustrated in FIG. 6D, the data row 667 comprises a byte
of'eachofaplurality of ECC codewords 620 (ECC codewords
D,O,R, S, T, U...V,W, X Y, and Z), each of which is
streamed to, and stored within, a respective column 118 (re-
spective solid-state storage element 116A-X). The data row
667 further comprises a parity byte 668 corresponding to the
data within the data row 667. Accordingly, the parity byte 668
corresponds to byte 0 of ECC codewords D, O, R, S, T,
U...V,W,X,Y,and Z.

The vertical configuration of FIGS. 6C and 6D may result
in a different IOPS metric. The vertical arrangement of the
ECC codewords 620 may reduce overhead due to read time
Tr, but may increase the stream overhead Ts. As data is
streamed from a logical storage element 116 A-Y, each byte
on the bus 127 may correspond to a different, respective data
segment (e.g., different ECC codeword 620). As such, 24
different ECC codewords 620 may be streamed in parallel (as
opposed to streaming a single ECC codeword 620 as in the
horizontal arrangement example). Moreover, since each col-
umn may be independently addressable, each transferred
logical page may comprise data of a separate request (e.g.,
may represent data of 24 different read requests). However,
since each ECC codeword is arranged vertically, the stream
time Ts for an ECC codeword 620 may be increased; the
stream time of 240-byte ECC codewords 620 in a vertical
configuration may be 240 cycles, as opposed to 10 cycles in
the fully horizontal layout of FIGS. 6A and 6B. The IOPS
metric for a single ECC codeword 620, therefore, may be
represented as:

1 Eq 3

I0PS, = ———————
T (T, +240%S,)

The reduced IOPS metric may be offset by the increased
throughput (reduced read overhead) and/or different Tr and
Ts latency times. These considerations may vary from device
to device and/or application to application. Moreover, the
IOPS metric may be ameliorated by the fact that multiple,
independent ECC codewords 620 can be streamed simulta-
neously. Therefore, in some embodiments, the data layout
used by the storage module 130 (and adaptive write module
248) may be configurable (e.g., by a user setting or prefer-
ence, firmware update, or the like).

As disclosed above, in some embodiments, the adaptive
write module 248 may be configured to layout and/or arrange
data in an adaptive channel configuration. As used herein, an
adaptive channel configuration refers to a data layout in
which the columns 118 of the array 115 are divided into a
plurality of independent channels, each channel comprising a
set of columns 118 of the solid-state storage array 115. The
channels may comprise subsets of the solid-state storage ele-
ments 116A-Y. In some embodiments, an adaptive channel
configuration may comprise a fully horizontal data layout, in
which data segments are stored within a channel comprising
24 columns 118 of the array 115, as disclosed in conjunction

20

40

45

55

26

with FIGS. 6A and 6B. In other embodiments, the adaptive
channel configuration may comprise a vertical configuration,
in which data segments are stored within one of 24 different
channels, each comprising a single column 118 of the array
115, as disclosed in conjunction with FIGS. 6C and 6D. In
other embodiments, the adaptive storage module 248 may be
configured to store data in other adaptive channel configura-
tions and/or layouts on the solid-state storage array 115. FI1G.
6F depicts another embodiment of a system 604 for adaptive
data storage. In the FIG. 6E embodiment, the adaptive storage
module 113 is configured to store data structures of adaptive
channels comprising two solid-state storage elements
116A-Y (two independent columns 118 per channel).
Accordingly, data segments may be stored within two col-
umns 118 of the array. In the FIG. 6E embodiment, the adap-
tive write module 248 may be configured to buffer 12 ECC
codewords 620 to stream to the array 115. Each of the 12 ECC
codewords 620 may stream to a respective set of two columns
118 within the array 115.

In alternative adaptive channel configurations, the adaptive
write module 248 may be configured to buffer 24/N ECC
codewords 620, where N corresponds to the configuration of
the adaptive channels used for each ECC codeword 620. ECC
codewords 620 may be stored within channels comprising N
independent columns 118. Accordingly, the horizontal
arrangement of FIGS. 6A and 6B could be referred to as an
adaptive channel configuration comprising 24 column chan-
nels, and the vertical data structure configuration of FIGS. 6C
and 6D may be referred to as an adaptive channel configura-
tion comprising single column channels. The adaptive stor-
age module 113 may be configured to arrange data in any
suitable hybrid arrangement, including heterogeneous virtual
columns. For example, the adaptive write module 248 may be
configured to buffer six (6) ECC codewords 620 in a four-
column adaptive channel configuration (e.g., store ECC code-
words 620 across each of four columns), buffer four ECC
codewords 620 in a six-column adaptive channel configura-
tion (e.g. store ECC codewords 620 across each of six col-
umns), and so on.

In some embodiments, data structures may be arranged in
adjacent columns 118 within the array 115 (e.g., a data struc-
ture may be stored in columns 0-4). Alternatively, columns
may be non-adjacent and/or interleaved with other data struc-
tures (e.g., a data structure may be stored on columns 0, 2, 4,
and 6 and another data structure may be stored on columns 2,
3, 5, and 7). The adaptive write module 248 may be config-
ured to adapt the data arrangement to out-of-service condi-
tions; if a column 118 (or portion thereof) is OOS, the adap-
tive storage module 113 may be configured to adapt the data
arrangement accordingly (e.g., arrange data to avoid the OOS
portions of the array 115, as disclosed above).

FIG. 6E depicts an embodiment of data layout within chan-
nels comprising two column of the array 115 (e.g., two solid-
state storage elements 116 A-X per channel). Accordingly,
each data row 667 may comprise two bytes of each of twelve
different ECC codewords 620 and a corresponding parity
byte. The data row 667 may comprise two bytes of ECC
codeword 621, two bytes of ECC codeword 622, two bytes of
ECC codeword 623, and so on. On each cycle of the bus 127,
two bytes of each ECC codeword 620 (e.g., ECC codewords
621, 622, 623, 629, and so on) are transferred to program
buffers of respective solid-state storage elements 116A-X.
Data of the ECC codeword D 621 may be streamed to a first
channel comprising columns 0 and 1 (solid-state storage ele-
ments 116A-B), the ECC codeword 622 may be streamed to
a second channel comprising columns 2 and 3 (solid-state
storage elements 116C-D), the ECC codeword 623 may be

US 9,116,823 B2

27
streamed to a third channel comprising columns 4 and 5
(solid-state storage elements 116E-F), the ECC codeword
629 may be streamed to a last channel comprising columns 22
and 23 (solid-state storage elements 116 W-X), and so on.

FIG. 6F depicts one embodiment 605 of a data structure
configuration for the two column channel embodiment of
FIG. 6E. As illustrated in FIG. 6F, data of ECC codeword D
621 may be stored within a channel comprising columns 0
and 1, data of ECC codeword 0 622 may be stored within a
channel comprising columns 2 and 3, data of ECC codeword
Q 623 may be stored within a channel comprising columns 4
and 5, and so on. FIG. 6F further depicts a data row 667. The
data row 667 of FIG. 6F may include two bytes of each of 12
different ECC codewords D, O, Q.. .Y, and Z. The data row
667 may further comprise a parity byte 668 corresponding to
the contents of the data row 667, as disclosed above.

The stream time T's of an ECC codeword 620 in the FIG. 6E
embodiment may be 120 cycles of the bus 127 (e.g., 240/N
cycles). An IOPS metric of the two-column hybrid arrange-
ment of FIG. 6E may be represented as:

1oPs 2 Eq. 4
T T (T, + 120%S,)

The IOPS metric may be modified according to a number
of data structures that can be read in parallel. The two-column
channel configuration of FIG. 6E may enable 12 different
ECC codewords (and/or packets) to be read from the array
115 concurrently.

The adaptive data structure configurations disclosed herein
may affect error detection and/or data recovery operations. In
a horizontal data alignment, data of each ECC codeword 620
may be spread across the columns 118 of the array 115 (e.g.,
10 bytes on each of 24 solid-state storage elements 116 A-X).
Therefore, if an uncorrectable ECC error is encountered,
identifying the source of the error may comprise performing
an iterative parity substitution across each of the 24 storage
elements 116A-X (e.g., reconstruct the ECC codeword 620
from parity data while omitting data of a respective storage
element 116A-X until the source of the error is identified).
Moreover, since the ECC codewords 620 cannot be corrected
until data of the failed column is recovered, parity reconstruc-
tion may aggregate errors in other columns 118.

By contrast, when data is arranged vertically as in FIGS.
6C and 6D, the source of the error may be immediately
determined without iterative parity substitution; since all of
the data of the ECC codeword 620 is stored within a single
solid-state storage element 116A-X, failure to validate an
ECC codeword 620 by the ECC read module 245 indicates
that the corresponding column 118 within the array 115 is the
source of the uncorrectable error.

As disclosed above, a suitable data arrangement may be
selected, at least in part, based upon the ECC algorithm in use
(e.g., the size of the ECC codewords 620, ratio between data
and syndrome, and so on). In some embodiments, the adap-
tive storage module 113 may be configured to implement a
symbolic ECC algorithm. For example, the ECC write mod-
ule 246 may be configured generate ECC codeword symbols
(e.g., 8-bit ECC codeword symbols), which may be individu-
ally streamed to solid-state storage array 115, as disclosed
herein. Since the ECC codeword symbols are configured for
storage within respective columns 118 (by the adaptive write
module 248), the adaptive storage module 113 may be
capable of arranging ECC codeword symbols comprising
particular data segments in any of the horizontal, vertical,
hybrid, and/or vertical stripe configurations disclosed herein.

15

20

25

30

35

40

45

50

28

Alternatively, or in addition, the data arrangement may be
selected according to other data structures within the ECC
codeword symbols, such as data packets 610, or the like. For
example, the adaptive storage module 248 may be configured
to store ECC symbols of a packet 610 horizontally, vertically,
in a hybrid channel configuration, and/or within vertical
stripes, as disclosed herein. Other ECC codeword symbol
sizes (e.g., 16-bit symbols, 32-bit symbols, and so on), may be
arranged according to a horizontal, vertical, hybrid channel,
and/or vertical stripe configuration, as disclosed herein.

Insome embodiments, vertical data structure configuration
may provide benefits for data reconstruction. In particular,
vertical data structure layout and/or arrangement may avoid
error aggregation issues. Referring back to FIG. 6D, the data
recovery module 170 may be configured to reconstruct data of
a vertically arranged ECC codeword 620 by reading ECC
codewords 620 on other columns 118 of the array 115, cor-
recting errors in the other ECC codewords 620 (if any) by,
inter alia, decoding the other ECC codewords 620 using the
ECC read module 245, and using the corrected and/or
decoded ECC codewords and parity data of column 24 to
reconstruct the ECC codeword 620 within the failed column
118. Use of corrected and/or decoded ECC codewords, as
opposed to portions of uncorrected ECC codeword data 620,
may prevent errors from being aggregated and/or included in
the reconstructed ECC codeword.

In the FIG. 6D data structure configuration, if column 0
comprising ECC codeword D 621 fails, such that the ECC
codeword D 621 cannot be read from the array, the recon-
struction module 170 may be configured to reconstruct the
ECC codeword 621 by reading ECC codewords 0 through Z
from columns 1 through 23 (and parity data of column 24),
correcting errors in the ECC codewords 0 through Z (if any)
by use of the ECC read module 245, and reconstructing data
of the ECC codeword D 621 using the corrected ECC code-
words 0 through 7 and the parity data of column 24. Accord-
ingly, the data used to correct ECC codeword D 621 (ECC
codewords 0 through 7Z) may be free from correctable errors,
and as such, such errors may not be reflected in the recon-
structed data comprising ECC codeword D 621.

Hybrid, independent channel data structure layouts may
provide similar benefits. For example, identifying errors in a
two-column hybrid may only require iterative substitution
between two columns, errors in a four-column hybrid may
only require iterative substitution between four columns, and
so on. Referring back to FIG. 6F, identifying the source of an
uncorrectable error in the ECC codeword D 621 may com-
prise iterative parity substitution between two columns 0 and
1.

Hybrid, independent channel configurations may also ben-
efit from reduced error aggregation during data reconstruc-
tion. Referring to the two-column channel embodiment of
FIGS. 6E and 6F, ECC codewords 620 may be stored within
channels comprising two columns 118 of the array 115.
Accordingly, reconstructing data of a failed column of one of
the channels may comprise reading data of other ECC code-
words 620 on other columns of the array 115, correcting
errors within the other ECC codewords 620 (if any), and using
the corrected ECC codewords 620, data of the valid column of
the channel, and the parity data to reconstruct data of the
failed column 118. For example, reconstructing data of failed
column 0 comprising ECC codeword D 621 may comprise
reading data of ECC codewords 0 through Z on columns 2
through 23; correcting errors within the ECC codewords 622,
623, through 629 (if any) by use of the ECC read module 245;
and reconstructing data of column 0 by use of data read from

US 9,116,823 B2

29

column 1, the corrected ECC codewords of columns 2
through 23, and the parity data of column 24. The only source
of'potential uncorrected errors is the other columns within the
channel with the failed column 0 (column 1). Accordingly,
data reconstructing in the FIGS. 6E and 6F embodiment
incorporates errors from only a single column, as opposed to
aggregating errors from 23 other columns as in the horizontal
data structure layout of FIGS. 6A and 6B.

The size of the data structures, such as the ECC codewords
620 and/or packets 610, may be adapted according to the data
arrangement implemented by adaptive write module 248. For
example, the size of the ECC codewords 620 may be selected
to minimize wasted overhead when ECC codewords 620 are
stored in a horizontal arrangement on 24 storage elements
116A-X. However, in other data arrangement embodiments,
other data structure sizes may be selected. For example, in the
vertical layout of FIGS. 6C and 6D, the size of the ECC
codeword 620 may be adapted according to the “depth” of the
columns (e.g., the page size of each solid-state storage ele-
ment). Hybrid, independent channel configurations may
involve similar sizing considerations. In some embodiments,
the size of the ECC codewords 620 (e.g., the ratio of data to
syndrome) may be used to determine a suitable data arrange-
ment. For example, given a particular ECC codeword size, a
data arrangement that minimizes wasted overhead, while pro-
viding an acceptable IOPS metric, may be identified based
on, inter alia, the depth of physical storage units of the solid-
state storage medium 110.

Table 1 illustrates various configurations of adaptive chan-
nel data layout embodiments used with different data struc-
ture sizes (240- and 960-byte ECC codewords 620), as dis-
closed herein:

Independent T,

Channels, T,:240- 960-Byte

Codewords/ Byte Data Data
Adaptive Data Configuration Read Structures Structures
1 of 24 (vertical, FIGS. 6C and 1 240 960
6D)
2 of 12 (hybrid, FIGS. 6E and 6F) 2 120 480
30f8 3 80 320
40f6 4 60 240
2of3and3of6 5 48 192
6of4 6 40 160
4 of 3 and 3 of 4 7 34 137
8 of 3 8 30 120
4 0of 3 and 5 of 2 and extra 2 of 1 9 27 107
4 0of 3 and 6 of 2 10 24 96
4of3and 50f2and2of1 11 22 87
12 0f2 12 20 80
40of3and 3 0f2and 6 of 1 13 18 74
4o0f3and 2 0f2and 8 of 1 14 17 69
40of3and1of2and 100f1 15 16 64
40of3and 12 of 1 16 15 60
3of3 and 14 of 1 and extra 1 of 1 17 14 56
3of3and150f1 18 13 53
2of3and 18 of 1 20 12 48
1 of 3 and 20 of 1 and extra 1 of 1 21 11 46
1of3 and 21 of 1 22 11 44
1of2 and 22 of 1 23 10 42
24 of 1 (horizontal, FIGS. 6A and 24 10 40

6B)

As disclosed herein, storage of data structures in vertical
configurations may improve error detection, error correction,
and/or data reconstruction performance. However, horizontal
storage configurations may provide performance benefits in
certain situations (e.g., reduce stream time). Accordingly, in
some embodiments, the storage module may be configured to
store data structures in an adaptive vertical stripe configura-

10

15

20

25

30

35

40

45

50

55

60

30

tion. As used herein, a vertical stripe configuration refers to
storing data structures vertically within vertical stripes having
a predetermined depth. Multiple vertical stripes may be
stored within rows 117 of the array 115. The depth of the
vertical stripes may, therefore, determine read-level parallel-
ism, whereas the vertical ECC configuration may maximize
error detection, error correction, and/or data reconstruction
benefits.

FIG. 6G depicts one embodiment of a vertical stripe data
configuration 606 within a logical page 542 (row 117) of a
solid-state storage array 115. As disclosed above, a vertical
stripe may comprise vertically arranged data structures
within respective columns 118 of the array 115. The vertical
stripes 646A-N have a configurable depth or length. In the
FIG. 6G embodiment, the vertical stripes 646 A-N are config-
ured to have a depth sufficient to store four ECC codewords.
In some embodiments, the depth of the vertical stripes
646 A-N corresponds to an integral factor of ECC codeword
size relative to a page size of the solid-state storage medium
110.

Inthe FIG. 6G embodiment, the page size of the solid-state
storage medium 110 may be 16 kb, each page may be con-
figured to hold four vertical stripes 646 A-N, and each vertical
stripe may be configured to hold four 1 kb vertically aligned
ECC codewords. The disclosed embodiments are not limited
in this regard, however, and could be adapted to use any
solid-state storage medium 110 having any page size in con-
junction with any ECC codeword size and/or vertical stripe
depth.

The depth of the vertical stripes 646 A-N and the size of
typical read operations may determine, inter alia, the number
of channels (columns) needed to perform read operations
(e.g., determine the number of channels used to perform a
read operation, stream time Ts, and so on). For example, a 4
kb data packet may be contained within five ECC codewords,
including ECC codewords 3 through 7. Reading the 4 kb
packet from the array 115 may, therefore, comprise reading
data from two columns (columns 0 and 1). A larger 8 kb data
structure may span 10 ECC codewords (ECC codewords
98-107), and as such, reading the 8 kb data structure may
comprise reading data from three columns of the array (col-
umns 0, 1, and 2). Configuring the vertical stripes 646A-N
with an increased depth may decrease the number of columns
needed for a read operation, which may increase the stream
time Ts for the individual read, but may allow for other
independent read operations to be performed in parallel.
Decreasing depth may increase the number of columns
needed for read operations, which may decrease stream time
T,, but result in decreasing the number of other, independent
read operations that can be performed in parallel.

FIG. 6H depicts embodiments of vertical stripes 607, each
having a different respective depth. The vertical stripes 607
may comprise 1 kb, vertically aligned ECC codewords as
disclosed above in conjunction with FIG. 6G. A 16 kb data
structure 610 (packet) may be stored within a 4 kb deep
vertical stripe 746. The data structure 610 may be contained
within 17 separate ECC codewords spanning five columns of
the array 115 (columns 0 through 5). Accordingly, reading the
data structure 610 may comprise reading data from an inde-
pendent channel comprising six columns. The stream time T's
of the read operation may correspond to the depth of the
vertical stripe 746A (e.g., the stream time of four ECC code-
words).

The depth of the vertical stripe 746B may be increased to 8
kb, which may be sufficient to hold eight vertically aligned
ECC codewords. The data structure 610 may be stored within
17 ECC codewords, as disclosed above. However, the modi-

US 9,116,823 B2

31

fied depth of the vertical stripe 746B may result in the data
structure occupying three columns (columns 0 through 2)
rather than six. Accordingly, reading the data structure 610
may comprise reading data from an independent channel
comprising three columns, which may increase the number of
other, independent read operations that can occur in parallel
on other columns (e.g., columns 3 and 4). The stream time Ts
of the read operation may double as compared to the stream
time of the vertical stripe 746A.

FIG. 6l is a block diagram of another embodiment of a
system 608 for adaptive data storage. In the FIG. 61 embodi-
ment, the adaptive write module 248 may be configured to
store data in a vertical stripe configuration within logical
pages 542 of the solid-state storage array 115. The write
module 240 may comprise one or more processing modules,
which, as disclosed above, may include, but are not limited to,
apacket module 242, a whiten module 244, and an ECC write
module 246. The ECC write module 246 may be configured
to generate ECC codewords 620 (ECC codewords 0 through
Z) in response to data for storage on the solid-state storage
array 115, as disclosed above. The ECC codewords 620 may
flow into the adaptive write module 248 serially via a 128-bit
data path of the write module 240. As disclosed in further
detail herein, the ECC write module 246 may further com-
prise a relational module 646 configured to include relational
information in one or more of the ECC codewords 620.

The adaptive write module 248 may be configured to buffer
the ECC codewords 620 for storage in vertical stripes, as
disclosed herein. The adaptive write module 248 may com-
prise an adaptive fill module 660 that is configured to rotate
the serial stream of ECC codewords 620 into vertical stripes
by use of, inter alia, one or more cross point switches, FIFO
buffers 662A-X, and the like. The FIFO buffers 662A-X may
each correspond to a respective column of the array 115. The
adaptive fill module 660 may be configured to rotate and/or
buffer the ECC codewords 620 according to a particular ver-
tical code word depth, which may be based on the ECC
codeword 620 size and/or size of physical storage units of the
array 115.

The adaptive write module 248 may be further configured
to manage OOS conditions within the solid-state storage
array 115. As disclosed above, an OOS condition may indi-
cate that one or more columns 118 of the array 115 are not
currently in use to store data. The storage metadata 135 may
identify columns 118 that are OOS within various portions
(e.g., rows 117, logical erase blocks 540, or the like) of the
solid-state storage array 115. In the FIG. 6] embodiment, the
storage metadata 135 may indicate that column 2, of the
current logical page 542, is OOS. In response, the adaptive fill
module 660 may be configured to avoid column 2 by, inter
alia, injecting padding data into the FIFO buffer of the OOS
column (e.g., FIFO buffer 662C).

In some embodiments, the adaptive write module 248 may
comprise a parity module 637 that is configured to generate
parity data in accordance with the vertical strip data configu-
ration. The parity data may be generated horizontally, on a
byte-by-byte basis within rows 117 of the array 115 as dis-
closed above. The parity data PO may correspond to ECC
codewords 0, 4, through 88; the parity data P1 may corre-
spond to ECC codewords 1, 5, through 89, and so on. The
adaptive write module 248 may include a parity control FIFO
662Y configured to manage OOS conditions for parity cal-
culations (e.g., ignore data within OOS columns for the pur-
poses of the parity calculation).

The vertical stripe data configuration generated by the
adaptive write module 248 (and parity module 637) may flow
to write buffers of the solid-state storage elements 116A-Y

25

40

45

32

within the array 115 through the write buffer and/or bank
controller 252, as disclosed above. In some embodiments,
data rows 667 generated by the adaptive write module 248
may comprise one byte for each data column in the array 115
(columns 116A-X). Each byte in a data row 667 may corre-
spond to a respective ECC codeword 620 and may include a
corresponding parity byte. Accordingly, each data row 667
may comprise horizontal byte-wise parity information from
which any of the bytes within the row 667 may be recon-
structed, as disclosed herein. A data row 667A may comprise
a byte of ECC codeword 0 for storage on column 0, a byte of
ECC codeword 4 for storage on column 1, padding data for
column 1, a byte of ECC codeword 88 for storage on column
23, and so on. The data row 667 may further comprise a parity
byte 668A for storage on column 24 (or other column), as
disclosed above.

The data may be programmed onto the solid-state storage
array 115 as a plurality of vertical stripes 646A-N within a
logical page 542, as disclosed above (e.g., by programming
the contents of program buffers to physical storage units of
the solid-state storage elements 116A-Y within the array
115). In the FIG. 61 embodiment, the indexing S*N may
correspond to vertical stripes configured to hold S ECC code-
words in an array 115 comprising N columns for storing data.

As disclosed herein, data structures, such as data packets,
may be stored within respective container data structures
(ECC codewords), which may be spread across different col-
umns 118 and/or rows 117 of the solid-state storage array 115.
FIG. 6J depicts one embodiment 609 of a solid-state storage
array 115 comprising a data structure (packet 810C) that is
stored within a plurality of vertical stripes 846 A-B. As illus-
trated in FIG. 6G, the adaptive write module 248 may be
configured to arrange ECC codewords comprising the data
structure 810C, such that portions of the data structure 810C
are stored within the vertical stripe 846 A and other portions
are stored in a different vertical stripe 846B (ECC codewords
comprising the packet 810C may wrap between different
vertical stripes). In addition, portions of the data structure
810C may be stored on different rows 117 of the array 115
(e.g., within different logical pages 542A and 542B). In some
embodiments, data structure 810C may span logical erase
blocks and/or banks 119A-N; the logical page 542A may be
within a different logical storage division 540 and/or different
bank 119A-N than the logical page 542B. Moreover, header
information stored with the data structures (e.g., headers
814A, 814B, and/or 814C) may be stored in separate ECC
codewords than other portions of the corresponding packets
812A, 812B, and/or 812C).

In some embodiments, the ECC codewords comprising a
particular data structure (e.g., data structure 810) may com-
prise relational information, which may allow the storage
module to verify that different ECC codewords read from
various different portions of the array 115 correspond to the
same data structure 810C, despite the fact that the header
information is distributed between different ECC codewords
stored on different portions of the array 115. Referring back to
FIG. 61, the ECC write module 246 may comprise a relational
module 646 configured to include relational information in
the ECC codewords 620 generated thereby. The relational
information may be configured to provide for identifying
and/or verifying that certain ECC codewords 620 are related
(e.g., provide for verifying that particular ECC codewords
620 comprise data of the same data structure 810C). The
relational information may comprise any identifying data. In
some embodiments, the relational information may be
derived from the header 814C of the packet, such as the
logical identifier(s) associated with the data structure 810C.

US 9,116,823 B2

33

The relational information pertaining to data structures pro-
cessed by the ECC write module 246 may, therefore, be
determined based on storage metadata 135 associated with
the data, header information, or the like.

The relational module 646 may be configured to mark the
ECC codewords 620 with relational information in any suit-
able format and/or using any suitable mechanism. Marking
may comprise adding information to the ECC codewords 620
(e.g., in one or more fields). In some embodiments, the rela-
tional module 646 may be configured to mark ECC code-
words 620 through Steganography and/or watermarking.
Watermarking may comprise performing an XOR operation
between relational information (e.g., a bitmask of one or more
logical identifier(s) associated with the corresponding data
structure) and the ECC codewords 620. As disclosed herein,
an ECC datastructure 620 may comprise portions of multiple
different data structures; such ECC codewords 620 may
include relational information associated with each data
structure contained therein. Accordingly, in some embodi-
ments, the relational module 646 may be configured to mark
an ECC codeword 620 with multiple instances of relational
information (e.g., multiple watermarks).

FIG. 6K is a block diagram of another embodiment of a
system 1610 for adaptive data storage. The system 1610
illustrates one embodiment of a read module 241 configured
to read data stored in a vertical stripe configuration on a
solid-state storage array 115. The read module 241 may com-
prise an adaptive read module 247 configured to read data
from rows of the array 115 (e.g., read data stored in vertical
stripes 646 A-N within logical pages 542 of the array 115).
Data may be read into a read buffer 251 by use of the bus 127,
bank controller 252, and/or log storage module 137.

The adaptive read module 247 may comprise an adaptive
strip module 661 configured to remove and/or avoid data of
columns that are OOS (based on the storage metadata 135, as
disclosed above), which may comprise removing the data
from an incoming data stream by use of a cross-point switch,
or the like.

The read sequence module 663 may be configured to reor-
der and/or recombine ECC codewords 620 in sequence,
which may comprise rotating vertical stripes read from the
array 115 by use of respective buffers 665A-Y, as disclosed
above (e.g., rotating and combining ECC codewords read
from respective columns 118 of the array 115). The
sequenced ECC codewords 620 may flow to other processing
modules of the read module 241.

In some embodiments, the ECC read module 245 may
comprise a relational verification module 645 configured to
verify relational information on the ECC codewords 620
(e.g., verify and/or authenticate one or more markings on the
ECC codewords 620). Verifying relational information may
comprise performing an XOR operation between the ECC
codewords 620 and respective logical identifier(s) associated
with the data structures contained therein. Verifying rela-
tional information of an ECC codeword 620 that comprises
portions of multiple packets may comprise performing mul-
tiple XOR operations, each corresponding to logical identi-
fier(s) of a packet contained therein. The logical identifier
information used to perform relational verification may be
received via the storage metadata 135 and/or as part of a read
request. In some embodiments, requests to read data on the
solid-state storage array 115 may be accompanied by the
logical identifier(s) associated with the request, which may be
translated into physical addresses by use of, inter alia, the
storage metadata 135. This logical identifier information may
be used to perform relational verification on the correspond-
ing ECC codewords 620. The logical identifier(s) of other

20

25

30

40

45

55

34

data structures within a particular ECC codeword 620 that are
not part of the read request (if any) may be determined by use
of, inter alia, a reverse index, or the like, of the storage
metadata 135.

If the relational verification module 645 fails to verify
relational information of an ECC codeword 620, the solid-
state adaptive storage module 113 may issue an interrupt,
indicating that the data could not be read. In response, the data
recovery module 170 may attempt to acquire the data from
another source and/or from another portion of the solid-state
storage array 115. In embodiments in which the relational
module 646 watermarks ECC codewords 620 with logical
identifier information, the relational verification module 645
may be configured to verify the relational information by
performing an equivalent XOR operation. If the relational
information differs between the XOR operation performed
during storage and the XOR operation performed when the
data is read, the corresponding ECC codeword(s) 620 may be
corrupted, and the ECC read module 245 will detect uncor-
rectable errors there; in response, the storage module 130 may
issue a read failure interrupt, as disclosed above.

FIG. 6L depicts one embodiment of data flow 1611 of a
read sequence operation. The data flow 1611 depicted in F1G.
6L may be implemented by the adaptive read module 247 as
disclosed herein. Referring to FIG. 6], storage module 130
may receive requests to read data packets 810A, 810B, and
810C. The read sequence module 663 and/or log storage
module 137 may configure the adaptive storage module 113
to read data from the columns 118 comprising the requested
data (by use of the logical-to-physical translation layer 132).
The adaptive storage module 113 may be configured to read
the data packets 810A, 810B, and 810C in a single read
operation on the array 115, which may comprise providing
different addressing information to different sets of columns
118. In the FIG. 6] embodiment, columns 0 and 1 may be
configured to read data from logical page 542B, column 2
may be configured to read data from logical page 542A,
columns 3 and 4 may be configured to read data from logical
page 542N, and columns 21-23 may be configured to read
data from logical page 542A. The different addressing infor-
mation may be sent to the independent columns 118 via the
bus 127, as disclosed above.

The read operation may comprise transferring the contents
of'the specified logical pages into the read buffer 251. FIG. 6L
depicts one embodiment of a read buffer comprising data of
packets 810A, 810B, and 810C. Columns 0 through 23 of the
buffer 251 may correspond to columns 118 of the array 115
and, as such, may comprise data read from read buffers of the
respective solid-state storage elements 116 A-Y comprising
the array 115. The contents of columns 5 through 20 are not
shown in FIG. 6L to avoid obscuring the details of the
depicted embodiment. These columns could, however, com-
prise data corresponding to other data structures, OOS mask
data, or no-op data, read from the corresponding solid-state
storage elements 116F-V.

The read sequence module 663 may be configured to deter-
mine which portions of the buffer 251 comprise valid data
(based on the logical-to-physical translation information,
OO0S metadata, and so on), and may reorder and/or mask the
contents of the read bufter 251 to generate a sequence of ECC
codewords 620 comprising the requested data. The read
sequence module 663 may be further configured to order the
data structures in accordance with an order of the request
requests within, inter alia, the request buffer 136. The ECC
codeword sequence 622 may comprise an ordered sequence
of ECC codewords 622A comprising data structure 810A,
followed by the ECC codewords 622B comprising data struc-

US 9,116,823 B2

35

ture 810B, and the ECC codewords 622C comprising data
structure 810C. As illustrated in FIG. 6C, the contents of
columns 0 and 1 of logical page 542B (ECC sequence 622C-
1) may be ordered after the contents of columns 21-23 (ECC
sequence 622C-2) in the sequence 622.

The ECC write module 246 may be configured to generate
ECC data of various types and/or in various formats. In some
embodiments, the ECC write module 246 is configured to
generate ECC codewords 620 comprising N bytes of data and
S bytes of ECC information (syndrome S). As disclosed
herein, the layout of ECC codewords 620 on the solid-state
storage array 115 may determine performance and/or data
recovery characteristics of the storage module 130. In some
embodiments, as illustrated in FIGS. 6 A, 6B, 6E, and 6F, data
of ECC codewords 620 may be spread across multiple col-
umns 118 of the array 115, and as such, determining the
source of an uncorrectable error in an ECC codeword 620
(and reconstructing the corresponding data from other col-
umns 118 of the array and/or parity data) may comprise
iterative parity substitution, which may result in error aggre-
gation.

FIG. 6M is a block diagram of another embodiment of a
system 1612 for adaptive storage. In the FIG. 6M embodi-
ment, the ECC write module 246 may be configured to gen-
erate ECC codeword symbols 630 (by use of an ECC symbol
generator module 686). As disclosed above, an ECC code-
word symbol 630 refers to an ECC codeword corresponding
to a particular type or class of ECC algorithm. A symbolic
ECC algorithm may comprise encoding data, such as a packet
610, as a plurality of ECC codeword symbols 630, as opposed
to data segments of length N and corresponding syndromes of
length S, as disclosed above. The ECC algorithms imple-
mented by the ECC write module 246 (and/or ECC symbol
generator 686) may include, but are not limited to, a Reed-
Solomon ECC, a block ECC, a convolutional ECC, concat-
enation code (e.g., combinations of two or more codes), a
non-binary code, or any other suitable symbol-based ECC
algorithm. Therefore, as used herein, a symbolic ECC algo-
rithm refers to an ECC encoding scheme in which a data
segment D is encoded into a plurality of discrete, fixed-length
ECC codeword symbols 630 (e.g., X separate, discrete ECC
codeword symbols 630), wherein the size of each of the
discrete, fixed-length ECC codeword symbols 630 (S length)
is less than a size of the encoded data segment D. In some
embodiments, each ECC codeword symbol 630 may be a
single byte in length. The total size and/or length of the ECC
codeword symbols 630 comprising the data segment D may
be expressed as X*(S length), and the ratio of the size of the
data segment D to the total size of the ECC codeword symbols
630, X*(S length), may determine, inter alia, the strength of
the ECC encoding (e.g., the number of errors that can be
detected and/or corrected by use of the ECC encoding). As
illustrated in FIG. 6M, the ECC write module 246 may further
comprise a relational module 646 configured to mark ECC
codeword symbols 630 with relational information (e.g., logi-
cal identifier(s) associated with data encoded within the ECC
codeword symbols 630), as disclosed above.

The ECC write module 246 may be configured to generate
ECC codeword symbols 630 for storage in a particular layout
and/or arrangement within the solid-state storage array 115.
Inthe FIG. 6M embodiment, the ECC codeword symbols 630
may be configured for storage within respective columns 118
of the array 115 (e.g., within respective solid-state storage
elements 116A-Y); each ECC codeword symbol 630 may
comprise a single byte. In the FIG. 6M embodiment, a data
packet 610 is encoded into a plurality of symbols SO through
SZ. An N byte packet 610 may be encoded into N+S ECC

10

15

20

25

30

35

40

45

50

55

60

65

36

codeword symbols 630. The ratio of N to N+S may determine
the strength of the ECC encoding, which, as disclosed above,
may determine, inter alia, the number of errors that can be
detected and/or corrected by use of the ECC encoding.

The adaptive write module 248 may be configured to
arrange the ECC codeword symbols 630 within respective
columns 118 of the solid-state storage array 115. The adaptive
write module 248 may be configured to store the ECC code-
word symbols 630 horizontally within the solid-state storage
array 115, as disclosed above in conjunction with FIGS. 6A
and 6B. The adaptive write module 248 may be further con-
figured to insert padding data into the write buffer 250 in
accordance with OOS conditions within the array 115 (and as
indicated by the storage metadata 135).

The write module 240 may be configured to stream data
rows 667 comprising 25 bytes to the array 115 (to program
buffers of the solid-state storage elements 116A-Y). Accord-
ingly, in each stream cycle, a complete one-byte ECC code-
word symbol 630 may be streamed to each of the solid-state
storage elements 116A-X (elements 0-23) along with a cor-
responding parity byte (to solid-state storage element 116,
or other storage element 116A-Y). As illustrated in FIG. 6M,
the datarow 667A streamed to the array 115 in a first bus cycle
comprises ECC codeword symbols 630 S0 through S23 for
storage on respective solid-state storage elements 116A-X.
The data row 667 A further comprises a corresponding parity
byte PA. The next data row 667B comprises ECC codeword
symbols 630 S24 through S47 and corresponding parity byte
PB, and so on. Although FIG. 6M depicts single-byte ECC
codeword symbols 630, the disclosure is not limited in this
regard and could be adapted to use other, multi-byte sized
ECC codeword symbols 630, as disclosed in further detail
herein.

As illustrated in FIG. 6M, although the ECC codeword
symbols SO through SZ are streamed horizontally across the
array 115 (as in FIGS. 6A and 6B), the individual ECC
codeword symbols 630 are configured to be stored within
respective columns 118. Accordingly, the ECC codeword
symbols 630 comprising the packet 610 may be read with a
high degree of parallelism, utilizing all 24 columns of the
array 115. However, since the ECC codeword symbols 630
are stored within respective columns 118, the performance of
error detection and/or data reconstruction operations may be
significantly improved.

In some embodiments, the ECC write module is configured
to generate differently sized ECC codeword symbols 630 in
accordance with the configuration of the solid-state storage
array 115, bus 127, adaptive storage module 248, and/or the
like. For example, if bus 127 were to have a width of 48 bytes
(two bytes per storage element 116A-X), the ECC codeword
symbols 630 may be configured to be two bytes in size, with
each column of the array 115 receiving a two-byte ECC
codeword symbol 630 on each stream cycle (e.g., into each of
two or more program buffers).

FIG. 6N is a block diagram of another embodiment of a
system 1613 for adaptive storage. The ECC write module 246
may be configured to generate two-byte ECC codeword sym-
bols 630. The adaptive write buffer 248 may be configured to
arrange the two-byte ECC codeword symbols 630 within
respective columns 118 of the array, such that both bytes of
each two-byte ECC codeword symbol 630 are stored within
the same solid-state storage element 116A-Y.

In FIG. 6N, the ECC codeword symbols 630 are repre-
sented as a first portion 631A comprising a first byte of the
ECC codeword symbol 630, and a second portion 631B com-
prising a second byte of the ECC codeword symbol 630. The
adaptive write module 248 may be configured to buffer the

US 9,116,823 B2

37

first portions 631A (in a first buffer 632A) and 24 of the
second portions 631B (in a second buffer 632B). Contents of
the first buffer 632A may be streamed to the array 115 in a first
data row 667 A, and contents of the second buffer 632B may
be streamed to the array 115 in a second data row 667B. The
first data row 667A may comprise the first byte of the ECC
codeword symbols 631A_0 through 631A_23, and the sec-
ond data row 667B may comprise the second byte of the ECC
codeword symbols 631B_0 through 631B_23. As disclosed
above, each data row 667A-B may comprise byte-wise parity
information. Data row 667A may comprise parity byte PA
corresponding to ECC codeword symbol bytes 631A_0
through 631A_23, and data row 667B may comprise parity
byte PB corresponding to ECC codeword symbol bytes
631B_0 through 631B_23. As illustrated FIG. 6M, each
multi-byte ECC codeword symbol 630 is stored within a
respective column 118 of the array 115; each solid-state stor-
age element 116A-X comprises a complete two-byte ECC
codeword symbol 630.

Although particular configurations of ECC codeword sym-
bols 630 are disclosed herein, the disclosure is not limited in
this regard, and could be adapted to generate ECC codeword
symbols of any suitable size for storage in any suitable con-
figuration. In some embodiments, for example, the adaptive
write module 248 may be configured to arrange ECC code-
word symbols 630 comprising three, four, or more bytes
within respective columns 118 of the array 115. Moreover,
although FIGS. 6M and 6N depict a horizontal data layout,
the disclosure is not limited in this regard. In other embodi-
ments, the adaptive write module 248 may be configured to
store ECC codeword symbols 630 of different data segments
and/or storage requests within respective independent chan-
nels, in a vertical configuration, and/or in a vertical stripe
configuration, as disclosed above.

The storage module 130 may leverage the ECC codeword
symbols 630 configured for storage within columns of the
array 115 to implement efficient recovery operations. FIG.
60 depicts one embodiment of data flow 1614 in an adaptive
storage system. As illustrated in FIG. 60, the write module
240 may be configured to store ECC codeword symbols 630
comprising a data packet 610 on the solid-state storage array
115. The data packet 610 may comprise a 512-byte packet
data segment 312 and an eight-byte header 314. The ECC
write module 246 may be configured to encode the data
packet 610 into 536 one-byte ECC codeword symbols 630
(S0 through S535). The adaptive write module 248 may be
configured to arrange the ECC codeword symbols 630 S0
through S535 horizontally within the array 115 (e.g., in a
channel comprising 24 solid-state storage elements 116A-X,
and a parity column 116Y). In other embodiments, the adap-
tive write module 248 may be configured to arrange the ECC
codeword symbols 630 S0 through S535 within an indepen-
dent channel comprising a subset of the columns 118 (one or
more solid-state storage elements 116 A-Y), in a vertical strip
configuration, or the like, as disclosed herein.

The read module 241 may be configured to read the data
packet 610 in response to a request. The read module 241 may
be configured to determine a storage location of the ECC
codeword symbols 630 comprising the data packet 610 by use
of, inter alia, the logical-to-physical translation layer 132
and/or storage metadata 135, as disclosed herein. The ECC
codeword symbols 630 SO through S535 may be arranged in
a horizontal data configuration and, as such, the read module
241 may read 24 of the ECC codeword symbols 630 S0
through S535 in parallel (in each cycle of the bus 127). Read-
ing the ECC codeword symbols 630 S0 through S535 may
comprise issuing one or more read commands to the solid-

10

15

20

25

30

35

40

45

50

55

60

65

38

state storage array 115. In some embodiments, the read com-
mand(s) may be issued to the columns 118 in parallel. The
read command(s) may cause the solid-state storage
element(s) 116A-Y to transfer the contents of a specified
physical storage location (e.g., a page, sector, or the like) into
a read buffer of the respective storage element(s) 116A-Y.
The contents of the solid-state storage element read bufter(s)
may be streamed into the read module 241 in one or more bus
cycles, as disclosed herein. Each stream cycle may comprise
transferring a respective data row 667A-U into the read mod-
ule 241, each of which may comprise a one-byte ECC code-
word symbol 630 S0-S535 read from a respective one of the
solid-state storage elements 116A-X. In other embodiments
comprising multi-byte ECC codeword symbols 630, each bus
cycle may transfer a portion of an ECC codeword symbol
stored within a respective column 116A-X, which may be
reconstructed by the adaptive read module 247, as disclosed
herein. The ECC read module 245 may be configured to
validate and/or decode the ECC codeword symbols 630 S0
through S535, which may comprise detecting and/or correct-
ing errors therein (if any). The ECC read module 245 may be
further configured to validate relational information of the
ECC codeword symbols (using a relational verification mod-
ule 645), as disclosed herein.

As illustrated in FIG. 60, the ECC codeword symbols 630
S0-S535 stored within a particular column 118 may be vali-
dated independently of the data stored in other columns 116.
The source of uncorrectable errors may, therefore, be identi-
fied without performing iterative parity substitution opera-
tions between columns 118 of the array 115 (e.g., the source
of the error is the solid-state storage element 116 A-X from
which the uncorrectable ECC codeword symbol 630 was
read). The source of correctable errors may be similarly iden-
tified and attributed to respective solid-state storage elements
116A-Y.

As disclosed above, the read module 241 may comprise an
adaptive read module 247 configured to read the ECC code-
word symbols 630 S0-535 from the array 115. The adaptive
read module 247 may be configured to remove and/or strip
data (if any) corresponding to OOS columns 118 of the array.
In some embodiments, the adaptive read module 247 is fur-
ther configured to reorder ECC codeword symbols 630
streamed into the read module 241 via the buffer 251 in
accordance with the layout of the ECC codeword symbols
630, as disclosed above in conjunction with FIG. 6L..

The ECC read module 245 may be configured to validate
and/or decode the ECC codeword symbols 630 S0-S535. The
ECC read module 245 may comprise an ECC symbol valida-
tion module 687 configured to validate and/or decode the
ECC codeword symbols 630 S0-S535 in accordance with the
symbolic ECC algorithm implemented by the ECC write
module 246 (and/or ECC generator module 686). The ECC
read module 245 may further comprise a relational verifica-
tion module 645 configured to validate relational information
of the ECC codeword symbols 630 S0-S535, as disclosed
above. Decoding and/or validating the ECC codeword sym-
bols 630 S0-S535 may, therefore, comprise reconstructing
the data packet 610, which may be provided to a storage client
104.

One or more of the ECC codeword symbols 630 S0-S535
comprising the data packet 610 may be unavailable due to,
inter alia, errors that cannot be corrected by the ECC encod-
ing implemented by the adaptive storage module 113. The
data recovery module 170 may be configured to reconstruct
unavailable ECC codeword symbols 630 using other ECC
codeword symbols 630 stored within the array 115 and/or
parity data (parity data PA-PU). Reconstructing an unavail-

US 9,116,823 B2

39

able ECC codeword symbol 630 may comprise accessing one
or more data rows 667A-N associated with the unavailable
ECC codeword symbol 630, validating and/or decoding other
ECC codeword symbols 630 within the data rows 667A-N,
and reconstructing data of the unavailable ECC codeword
symbol using the corrected ECC codeword symbols 630 and
parity data (e.g., using parity substitution). The use of cor-
rected ECC codeword symbols 630 may prevent errors from
other columns 118 from being included in the reconstructed
ECC codeword symbol 630 and, as such, may improve data
reconstruction performance. Alternatively, the data recovery
module 170 may be configured to reconstruct an unavailable
ECC codeword symbol by use of uncorrected and/or un-
decoded ECC codeword symbols. The use of uncorrected
and/or un-decoded ECC codeword symbols may reduce com-
putational overhead, which may improve performance in
low-error-rate embodiments. The data recovery module 170
may be further configured to take portions of the array 115
OOS in response to one or more of identifying an unavailable
ECC codeword symbol read from the column 118, in
response to detecting more than a threshold number of
unavailable ECC codeword symbols read from the column
118; one or more ECC codeword symbols exceeding an
acceptable rate of correctable errors; and/or the like.

FIG. 6P depicts one embodiment of data layout 1615
within a solid-state storage array 115 comprising unavailable
ECC codeword symbols S0, S24, through S528 comprising
portions of the data packet 610 of FIG. 60, which may be due
to, inter alia, failure of a portion of solid-state storage element
116A. As disclosed above, the unavailable ECC codeword
symbols S0, S24, through S528 may be associated with
respective data rows 667A-667U, each comprising one or
more other ECC codeword symbols 630 stored on other col-
umns 118 of the array 115 (solid-state storage elements
116B-X). In some embodiments, the data rows 667A-U may
further comprise respective parity data PA through PU. The
data recovery module 170 may be configured to reconstructed
the ECC codeword symbols S0, S24, through S528 using
byte-wise parity substitution within the data rows 667A-U.
As disclosed above, byte-wise parity substitution may com-
prise reconstructing a byte of data stored within a failed
column 118 by use of bytes stored in other columns 118
and/or a corresponding parity byte.

In some embodiments, the data recovery module 170 is
configured to a) read data rows 667A-U, b) validate and/or
decode the ECC codeword symbols 630 within the respective
data rows 667A-U, and c) reconstruct the unavailable ECC
codeword symbols 630 S0, S24, through S528 using parity
substitution between the validated and/or decoded ECC code-
word symbols 630 and the corresponding parity byte PA-PA.
Reconstructing ECC codeword symbol 630 S0 may comprise
a) accessing ECC codeword symbols 630 S1 through S23
within row 667A, b) correcting the ECC codeword symbols
630 S1 through S23 (by use of the ECC read module 245), and
¢) performing a parity substitution operation to reconstruct
ECC codeword symbol 630 S0. The ECC codeword symbols
630 S24 through S528 may be reconstructed in corresponding
byte-wise parity substitution operations. As depicted in FIG.
6P, reconstructing the ECC codeword symbol 630 S528 may
incorporate corrected ECC codeword symbols 630 of one or
more other data packets and/or data segments (symbols X0
and X1). Accordingly, in some embodiments, reconstructing
an unavailable ECC codeword symbol 630 of a data packet
620 may comprise accessing and/or validating one or more
ECC codeword symbols 630 of other data packets 620 and/or
incorporating parity data pertaining to ECC codeword sym-

10

15

20

25

30

35

40

45

50

55

60

65

40

bols 630 of other data packets (e.g., the parity data P21 may
comprise information pertaining to symbols X0 and X1).

In some embodiments, the ECC algorithm implemented by
the adaptive write module 113 may be capable of reconstruct-
ing unavailable data. For example, a symbolic ECC algorithm
may be capable of reconstructing one or more unavailable
ECC codeword symbols 630 by use of other ECC codeword
symbols and/or without the use of parity data (e.g., PA-PU).
Accordingly, in some embodiments, the adaptive write mod-
ule 248 may be configured to omit parity data from the data
rows 667A-U, which may allow the full 25 solid-state storage
elements 116A-Y to be used to store ECC codeword symbol
data. In such embodiments, reconstructing an unavailable
ECC codeword symbol 630 may comprise a) reading a plu-
rality of ECC codeword symbols 630 from one or more data
rows 667A-U within the array 115, b) validating and/or
decoding the ECC codeword symbols 630 (if possible), and ¢)
reconstructing the unavailable ECC codeword symbols 630
using the other ECC codeword symbols 630 in accordance
with the ECC algorithm.

As disclosed above, although the embodiments illustrated
in FIGS. 6N-P describe a horizontal data configuration of
ECC codeword symbols 630, the disclosure is not limited in
this regard; the disclosed embodiments could be adapted to
store data encoded as ECC codeword symbols 630 in any
suitable configuration including, but not limited to, horizon-
tal; vertical; hybrid, independent channel; vertical stripe; and/
orthelike. FIG. 6Q is ablock diagram of another embodiment
of'a system 1616 for adaptive storage. The FIG. 6QQ embodi-
ment may be configured to store data encoded as ECC code-
word symbols 630 within adaptive, independent channels
696 A-N, each of which may comprise one or more columns
of'the array 115 (e.g., sets of one or more solid-state storage
elements 116A-Y).

The adaptive storage module 113 may be configured to
process multiple data streams for storage on the array 115,
each of which may correspond to a different respective stor-
age request. In the FIG. 6QQ embodiment, the write module
240 is configured to process N data streams in parallel,
including data segments 612A, 612B, through 612N. The
data segments 612A-N may be processed by one or more
modules of the write module 240, as disclosed above, which
may comprise generating respective packets 610A, 6108,
through 610N. The data segments 612A-N may be processed
in parallel, which may comprise processing the data using
multiple instantiations of the packet module 242, whiten
module 244, and so on; a wide data path; or the like. Alter-
natively, the data segments 612A-N may be processed seri-
ally, and may be buffered for parallel storage within respec-
tive channels 696A-N using, inter alia, the adaptive write
module 248.

The ECC write module 246 (and/or set of ECC write mod-
ules 246) may be configured to generate respective sets of
ECC codeword symbols 630A-N corresponding to each of
the data packets 610A-N (by use of the ECC symbol genera-
tor module 686). Each data packet 610A-N may comprise
X+1 ECC codeword symbols 630A-N. As disclosed above,
the ratio between the size of the data packets 610A-N and the
corresponding sets of ECC codeword symbols 630A-N may
determine, inter alia, the strength of the ECC algorithm (the
number of errors that can be detected and/or corrected by use
of'the ECC algorithm). In the FIG. 6Q embodiment, the ECC
write module 246 is configured to generate one-byte ECC
codeword symbols 630A-N. The ECC write module 246 may
be further configured to mark the ECC codeword symbols
630A-N with relational information (using the relational
module 646), as disclosed above.

US 9,116,823 B2

41

The sets of ECC codeword symbols 630A-N correspond-
ing to the packets 610A-N may flow to the adaptive write
module 248, which may be configured to arrange the sets of
ECC codeword symbols 630A-N in one of a horizontal con-
figuration; a vertical configuration; a hybrid, independent
channel configuration; a vertical stripe configuration; or the
like. In the FIG. 6Q embodiment, the adaptive write module
248 is configured to arrange the sets of ECC codeword sym-
bols 630A-N in a hybrid, independent channel configuration,
wherein each channel 696 A-N comprises four columns 118
of the array 115. The adaptive write module 248 may be
configured to buffer the sets of ECC codeword symbols in
respective channel buffers 664A-N (FIFO buffers). Each
channel butfer 664 A-N may be four bytes wide, such that four
of'each set of ECC codeword symbols 630A-N streams to the
array 115 in each bus cycle.

The adaptive fill module 660 may be configured to manage
OOS conditions within the array 115, as disclosed above. The
adaptive write module 248 may further comprise a parity
module 637 configured to generate parity data corresponding
to each data row 667 streamed to the array. The parity control
FIFO 664 may be configured to manage parity calculations in
accordance with OOS conditions within the array 115 (as
indicated by the storage metadata 135).

As illustrated in FIG. 6Q), the adaptive write module 248 is
configured to divide the solid-state storage array 115 into a set
of'independent channels 696A-N, each of which comprises a
set of four columns 118: channel 696 A comprises solid-state
storage elements 116A-D, channel 696B comprises solid-
state storage elements 116E-H, channel 696N comprises
solid-state storage elements 116U-X, and so on. The set of
ECC codeword symbols 630A comprising packet 610A are
configured for storage in channel 696 A, the set of ECC code-
word symbols 630B comprising packet 610B are configured
to storage in channel 696B, the ECC codeword symbols 630N
comprising packet 610N are configured to storage in channel
696N, and so on. As disclosed above, the independent chan-
nel configuration of FIG. 6QQ may increase the stream time of
data packets 610A-N as compared to the horizontal ECC
codeword symbol configuration of FIGS. 6N-O (due to the
increased parallelism for individual reads available in hori-
zontal data configurations). However, dividing the array 115
into independent channels may allow the read module 241 to
perform different read operations within the different chan-
nels concurrently, which may increase performance in certain
use cases (in accordance with the stream time, read time,
and/or IOPS metrics disclosed above).

As shown in FIG. 6Q, each datarow 667 A-N may comprise
ECC codeword symbols 630A-N of a plurality of different
data segments (packets 610A-N), and the ECC codeword
symbols 630A-N comprising the respective packets 610A-N
may be spread across two or more solid-state storage ele-
ments 116A-X (in accordance with the hybrid, independent
channel configuration implemented by the adaptive write
module 248). The adaptive write module 248 may be further
configured to arrange the individual ECC codewords 630A-N
for storage within respective columns 118 of the array 115,
which, as disclosed above, may be leveraged to improve data
reconstruction performance. In the FIG. 6Q embodiment,
reconstructing the ECC codeword symbol SA[0] of column
118 may comprise: a) accessing other ECC codeword sym-
bols 630 within the data row 667 A with the unavailable ECC
codeword symbol SA[0] (ECC codeword symbols SA[1]-SA
[3], SB[0]-SB[3], through SN[0]-SN[3], correcting the other
ECC codeword symbols, and reconstructing SA[0] by use of
the corrected ECC codeword symbols and the corresponding
parity data PA. As disclosed in further detail below, read

10

15

20

25

30

35

40

45

50

55

60

42

operations in the hybrid, independent channel configuration
of FIG. 6Q may comprise reading different portions of the
array within different channels 696A-N (e.g., reading data of
afirst data row 667 A within channel 696 A while reading data
of a second data row 667B in channel 696B). The adaptive
storage module 113 may comprise an adaptive schedule mod-
ule 114 configured to schedule concurrent read operations
within the independent channels 696A-N (as disclosed in
further detail below). Accordingly, accessing the other ECC
codeword symbols 630 in the data row 667A may comprise
performing one or more additional read operations, as dis-
closed herein in conjunction with FIG. 8.

Referring back to FIG. 1, the storage module 130 may
comprise a request buffer 136 configured to receive storage
requests from one or more storage clients 104. The storage
requests may be queued in the request buffer 136 and serviced
and/or executed by the storage module 130. In some embodi-
ments, the storage module 130 comprises an adaptive sched-
ule module 114 configured to determine an optimal schedule
for storage operations based on, inter alia, the adaptive data
configuration on the solid-state storage array 115. As used
herein, an “optimal” schedule refers to a schedule that maxi-
mizes an objective criteria. In some embodiments, the objec-
tive criteria may be maximization of parallelism while main-
taining data ordering constraints and/or avoiding hazards,
such as read before write, write before read, or the like.

FIG. 7 depicts one embodiment of adaptive scheduling
performed by the adaptive schedule module 114. The adap-
tive schedule module 114 may be configured to schedule
storage operations in accordance with the adaptive configu-
ration of data structures on a solid-state storage array 115. As
illustrated in FIG. 7, an ordered sequence of requests to read
packets A, B, C, D, E, and F may be received at the storage
module and buffered in the request buffer 136. The adaptive
schedule module 114 may be configured to analyze the
requests in the buffer 136, determine a layout of data corre-
sponding to the requests on the solid-state storage array 115,
and combine and/or schedule the requests to maximize read
parallelism, while avoiding data hazards.

The adaptive schedule module 114 may determine that the
read requests correspond to the data layout depicted in FIG. 7,
by use of, inter alia, the logical-to-physical translation layer
132 and storage metadata 135. The adaptive schedule module
114 may be further configured to identify column and/or
channel conflicts between read requests, which may comprise
identifying which read requests require use of columns that
are needed by other read requests. As illustrated in FIG. 7,
data packets 710A-F stored within overlapping columns of
the array 115 may be considered to conflict with respect to
read scheduling. In the FIG. 7 embodiment data packet 710A
overlaps with (conflicts with) packet 710B, packet 710B
overlaps with packets 710A and 710C, packet 710E overlaps
with packets 710D and 710F, and so on. The adaptive sched-
ule module 114 may identify channel conflicts by use of
column bitmaps, or other technique. The adaptive schedule
module 114 may be further configured to identify read
requests that can be performed in parallel (e.g., read requests
that do not conflict and/or require access to the same columns
of'the array 115). Non-conflicting read requests may be com-
bined and/or aggregated into a single, composite read request.
In the FIG. 7 embodiment, the requests to read packets A, C,
E, and F may be combined into a single read operation 761.
The requests to read packets B and D may be combined into
another read operation 762. Data of the read operations 761
and 762 may be processed by the read module 241, which
may comprise reordering, ECC decoding, dewhitening, and/
or depacketizing the data, as disclosed herein. As illustrated in

US 9,116,823 B2

43

FIG. 7, the combined read requests may change the order of
read operations (perform the read of packets C, E, and F
before packet B). The adaptive schedule module 114 may be
configured to combine, schedule and/or reorder operations to
prevent data hazards, such as read-before-write and/or write-
before write. Alternatively, the adaptive schedule module 114
may be configured to maintain the order of the requests in the
buffer 136, which may limit the degree of parallelism that can
be achieved through request scheduling and aggregation.

As disclosed herein, errors within ECC codewords may be
detected and/or corrected by the ECC read module 245 as data
is read from the solid-state storage array 115. Some ECC
codewords, however, may comprise more errors than can be
corrected by the ECC algorithm. As disclosed above, in
response to detecting an uncorrectable ECC codeword, the
adaptive storage module 113 may issue an interrupt to the
data recovery module 170, which may attempt to recover the
data using, inter alia, parity data stored on the solid-state
storage array. In some cases, uncorrectable errors may be
caused by the failure of a portion of the solid-state storage
array 115. Such errors may occur within specific columns,
and as such, error conditions may result in losing the data of
portions of a column 118 within the array 115.

FIG. 8 is a block diagram of one embodiment of a system
800 for reconstructing data stored on a failed column of a
solid-state storage array 115 using, inter alia, parity substitu-
tion. Data of packet 910A may be read from the array 115 in
a read operation. Data of the packet 910A may be stored
within vertical stripe 946B. The read operation 961 may
include reading other data packets 910B and 910C within
other logical pages 946 A and 946N. Data of the other packets
910B and 910C may not comprise uncorrectable errors, and
may be processed through the read module 241, as disclosed
above.

The ECC codewords in column 0 of the vertical stripe
946B, comprising data of packet 910A, may comprise errors
that cannot be corrected by the ECC read module 245. In
response, the adaptive storage module 113 may issue an inter-
rupt to the data recovery module 170. The data recovery
module 170 may be configured to determine the source of the
uncorrectable error by use of the logical-to-physical transla-
tion layer 132, and to reconstruct data of column 0 in the
vertical stripe 946B by use of, inter alia, other ECC code-
words and/or the parity data stored within the vertical stripe
946B.

The data recovery module 170 may be configured to issue
another read operation 962 to read the other ECC codewords
919 within the vertical stripe 946B. The read operation 962
may further comprise reading parity data 947B of the vertical
stripe 946B. The data acquired in the read operation 962 may
be processed by the adaptive read module 248, which may
comprise stripping padding data (if any) from the read buffer
251, as disclosed above. The ECC read module 245 may be
configured to identify and/or correct errors in the ECC code-
words 910A and 919, which may comprise decoding the ECC
codewords 910A and 919 and/or generating corrected ECC
codewords 920A and 929.

The data recovery module 170 may comprise a parity sub-
stitution module, which may be configured to reconstruct the
ECC codewords 911A-N in column 0 by use of the corrected
ECC codewords 920A-N corresponding to columns 1
through 10, corrected ECC codewords 929A-N correspond-
ing to columns 11-23, and parity data 947A-N: ECC code-
word 911A may be reconstructed by use of corrected ECC
codewords 920A[1 through 10], corrected ECC codewords
929A[11 through 23], and parity data 947A; ECC codeword
911B may be reconstructed by use of corrected ECC code-

25

30

40

45

50

44

words 920B[1 through 10], corrected ECC codewords 929B
[11 through 23], and parity data 947B; and so on. As disclosed
above, use of the corrected ECC codewords 919A-N and
929A-N may prevent error aggregation during parity substi-
tution operations.

In some embodiments, parity substitution module 172 may
be configured to perform a byte-wise parity substitution
operation corresponding to the byte-wise parity generation
embodiments disclosed in conjunction with FIGS. 6A-F, 61,
and 6K. Following reconstruction of the ECC codewords of
column 0, data packet 910A may processed by the read mod-
ule 241 and returned to the requester, as disclosed herein,
which may comprise discarding the other ECC codewords
919 and 929 read from the vertical stripe 946B.

FIG. 9 is a flow diagram of one embodiment of a method
900 for adaptive data storage. The method 900, and the other
methods disclosed herein, may comprise steps configured for
execution by a machine, such as a computing device 101,
storage module 130, and/or adaptive storage module 113 as
disclosed herein. Steps of the disclosed methods may be
embodied as a computer program product, including a com-
puter-readable storage medium comprising instructions con-
figured for execution by a computing device to perform one or
more method steps.

The method 900 may start and/or be initialized, which may
comprise initializing communication resources, loading
computer-executable instructions, and so on.

Step 920 may comprise arranging data for storage on a
solid-state storage array 115. The solid-state storage array
115 may comprise a plurality of independent columns 118
(e.g., solid-state storage elements 116A-Y), which may be
communicatively coupled to an adaptive storage module 113
in parallel by, inter alia, a bus 127.

In some embodiments step 920 may further comprise gen-
erating data structures for storage on the array 115. Step 920
may comprise generating one or more packets 310 compris-
ing data for storage on the array 115, by use of a packet
module 242. The packets 310 may comprise contextual meta-
data pertaining to the data, such as one or more logical iden-
tifiers associated with the data, and so on, as disclosed above.
Step 920 may further comprise whitening the data packets, by
use of a whiten module 244. Step 920 may comprise gener-
ating one or more ECC codewords comprising the packets.
The ECC codewords may comprise ECC codewords, ECC
codewords, ECC codeword symbols, or the like. In some
embodiments, step 920 further comprises including relational
information in the ECC codewords, which may comprise
watermarking the ECC codewords within a bitmask (or other
data) derived from a logical identifier associated with the data
packets.

Arranging the data at step 920 may comprise buffering one
or more data structures, such that the data structures layout
within portions of the solid-state storage array 115. Arranging
the data structures at step 920 may, therefore, comprise con-
figuring the data structures to layout in a horizontal, vertical,
and/or hybrid configuration within the solid-state storage
array 115. Step 820 may comprise a 24-byte by 10-byte buffer
of'the horizontal embodiment of FIG. 6A. Alternatively, step
920 may comprise arranging the data structures for a vertical
data structure layout, as disclosed in conjunction with FIG.
6C; step 920 may comprise using a buffer capable of buffer-
ing 24 240-byte ECC codewords 620 (or other data struc-
tures) for storage on respective columns of the logical storage
element. Step 920 may further comprise arranging the data
structures in a hybrid, independent channel configuration as
disclosed in conjunction with FIG. 6E; step 920 may com-
prise buffering data structures in a write buffer capable of

US 9,116,823 B2

45

buffering 24/N 240-byte ECC codewords 620 where N is the
number of independent columns of the hybrid storage
arrangement. The data structures may comprise ECC code-
words 620. The arrangement of step 920 may comprise con-
figuring data of the same ECC codeword for storage on two of
more different independent columns 118 of the array 115.
Alternatively, the arrangement of step 920 may comprise
configuring data of the ECC codewords 620 for storage
within respective columns 118 of the array 115.

Alternatively, or in addition, buffering the data structures at
step 920 may comprise configuring the data structures to
layout within vertical stripes of the solid-state storage array
115. Step 920 may comprise buffering the data in accordance
with a selected vertical stripe depth and/or length, which may
correspond to an integral factor of data structures and/or page
size of the solid-state storage medium 110. Step 920 may,
therefore, comprise streaming ECC codewords 620 into ver-
tical FIFO buffers 662A-X as disclosed in conjunction with
FIG. 61. The vertical stripe configuration may comprise stor-
ing ECC codewords 620 within respective columns 118 of the
array 115. However, data structures contained within the ECC
codewords 620 (e.g., packets) may be configured for storage
on two or more different columns 118.

In some embodiments, step 920 further comprises adapting
the data layout to avoid portions of the array 115 that are OOS.
Step 920 may comprise injecting padding data into the
buffer(s) to mask OOS columns 118 of the array (in accor-
dance with the storage metadata 135), as disclosed above.

Step 930 may comprise streaming the data arranged at step
920 to the solid-state storage array 115, as disclosed above.
Step 830 may comprise byte-wise streaming bytes to program
buffers of a plurality of independent columns 118 of the array
115. Step 930 may further comprise generating byte-wise
parity information for storage on a parity column of the array
115, as disclosed above.

Step 940 may comprise programming the contents of the
program buffers streamed at step 930 onto a logical page of
the solid-state storage array 115. Step 940 may comprise
issuing a program command to the solid-state storage array
115 via the bus 127. In response to the command, each of the
plurality of independent columns 118 of the array may be
configured to perform a program operation concurrently and/
or in parallel with other columns 118 within the array 115.
Steps 920-940 may further comprise updating the logical-to-
physical translation layer 132 to indicate the physical storage
locations of the data structures stored on the array 115. The
physical storage locations may indicate the bank 119A-N,
array 115A-N, logical page 542, offset, and the like, of the
data structures. The logical-to-physical translation metadata
may comprise any-to-any associations between logical
addresses, such as logical identifiers, and addresses of physi-
cal storage locations within the array 115.

FIG. 10 is a flow diagram of another embodiment of a
method 1000 for adaptive data storage. The method 1000 may
start and/or be initialized as disclosed above.

Step 1010 may comprise determining an adaptive data
arrangement for use within a solid-state storage array 115.
The determination of step 1010 may be based on, inter alia, a
read time Tr of the solid-state storage medium 110, a stream
time Ts of the adaptive storage module 113, data access
characteristics of storage clients 104, desired IOPS charac-
teristics, data reconstruction characteristics, and so on. The
determination of step 1010 may comprise selecting between
one or more of a) a horizontal data arrangement that reduces
stream time Tr, but reduces availability of read-parallelism, b)
a vertical data arrangement that increases read-parallelism,
but may increase stream time Tr, ¢) a hybrid, independent

25

30

35

40

45

55

46

channel configuration, and/or d) a vertical stripe configura-
tion having a particular vertical stripe depth.

Step 1010 may comprise generating a profile of data stor-
age operations by, inter alia, the adaptive storage profiling
module 160. As used herein, profiling data operations refers
to gathering information (e.g., storage metadata 135) pertain-
ing to the storage operations performed by storage clients 104
through the storage interface 131. Profiling data may com-
prise data access patterns, characteristics of the solid-state
storage medium 110, bus 127, and so on, which may be used
to determine an optimal adaptive data structure layout on the
solid-state storage array 115. The adaptive storage profiling
module 160 may be configured to gather such profiling infor-
mation and/or generate recommendations regarding data lay-
out in response to the profiling information. For example,
applications that exhibit a large number of data accesses to
relatively small data segments and/or packets may be suited to
a vertical configuration; a hybrid, independent channel con-
figuration (e.g., two- or four-column channel configuration);
and/or a vertical stripe configuration. In another example, the
storage medium 110 may exhibit relatively high stream times
as compared to read times Tr, and as such, a horizontal and/or
wide channel configuration may result in improved perfor-
mance.

The determination of step 1010 may be based on data
reconstruction characteristics of various adaptive data lay-
outs. Over time, the solid-state storage medium 110 may
become less reliable and, as such, a data structure configura-
tion that provides better data reconstruction performance may
be preferred over other configurations. For example, highly
vertical configurations, including the vertical stripe configu-
rations, may reduce error aggregation during parity recon-
struction operations as compared to horizontal data layouts
and, as such, may provide improved data reconstruction per-
formance.

In some embodiments, step 1010 may comprise determin-
ing an adaptive data layout by use of an objective function.
The objective function may be configured to quantify the
performance of different adaptive data layout configurations
in view of the profiling data gathered by the adaptive storage
profiling module 160 and/or other considerations (e.g., data
reconstruction characteristics). The adaptive data configura-
tion that provides the highest utility per the objective function
may be identified as the optimal data configuration for the
particular set of profiling data and/or other considerations.

Step 1010 may further comprise automatically configuring
the storage module 130 to implement the determined adaptive
data arrangement. Alternatively, step 1010 may comprise pro-
viding information pertaining to the determined adaptive data
arrangement to a user, administrator, or other entity, which
may determine whether any changes should be implemented.

Steps 1020, 1030, and 1040 may comprise arranging data
for storage on the solid-state storage array 115 in accordance
with the determined adaptive data arrangement, streaming the
data structures to the array 115, and programming the data to
the array 115, as disclosed above.

FIG. 11 is a flow diagram of another embodiment of a
method 1100 for adaptive data storage. Step 1120 may com-
prise determining the storage location of requested data
within the array 115. Step 1120 may comprise determining
the storage location by use of a logical-to-physical translation
layer 132, which may include storage metadata 135, such as
a forward index, map, or the like. The storage location may
indicate an adaptive layout configuration of the data structure
on the array 115 which, as disclosed herein, may include, but
is not limited to, a horizontal configuration; a vertical con-

US 9,116,823 B2

47

figuration; a hybrid, independent channel configuration; a
vertical stripe configuration; or the like.

Step 1130 may comprise reading the data from the deter-
mined storage locations and/or in accordance with the deter-
mined data structure configuration. The read operation may
comprise reading data from one or more independent col-
umns 118 comprising the array 115 (e.g., reading data from
one or more solid-state storage elements 116A-Y), as dis-
closed herein. Step 1130 may comprise providing columns
118 of the array 115 with respective physical addresses (as
determined at step 1120). The physical address may be the
same (or equivalent) for each of the solid-state storage ele-
ments 116 A-Y (e.g., in a horizontal data arrangement). Alter-
natively, the physical addresses may differ (e.g., for vertical;
hybrid, independent channel; and/or certain vertical stripe
configurations). Step 1130 may incur a read latency Tr, as
described above.

Step 1130 may further comprise streaming the ECC code-
words from read buffer(s) of the array into an adaptive storage
module 113. Streaming the data structures may comprise
streaming sufficient data to reconstruct a data structure, such
as a plurality of ECC codewords 620 comprising one or more
packets comprising the requested data. Each cycle of the bus
127 may be configured to transfer a single byte from each
column 118 of the array. The number of bus cycles needed to
transfer the requested ECC codewords may depend on the
arrangement of the data: data arranged horizontally may
require 10 cycles to transfer a 240-byte ECC codeword from
24 columns 118; data arranged vertically may require 240
cycles to transfer the same 240-byte ECC codeword from a
single column 118; data arranged in a hybrid, independent
channel arrangement may require 240/N cycles, where N is
the number of independent, horizontal columns in the
arrangement; and data arranged in vertical stripes may
require 240 cycles. In the vertical; hybrid, independent chan-
nel; and vertical stripe configurations, however, multiple
ECC codewords may be streamed concurrently.

Step 1140 may comprise reconstructing the requested data
by use of the adaptive storage module 130 (e.g., an adaptive
read module 247). Step 1140 may comprise buffering data
read from the array 115, reordering the data, stripping pad-
ding data corresponding to OOS columns 118 (if any), and so
on as disclosed herein. Step 1140 may further comprise per-
forming ECC error detection and/or correction on ECC code-
words 620 comprising the data packet, by use ofthe ECC read
module 245. ECC processing may further comprise veritying
relational information associated with the ECC codewords,
such as a watermark on the ECC codewords, which may be
derived from one or more logical identifiers associated with
the requested data. Step 1140 may further comprise dewhit-
ening the data packets, by use of the dewhiten module 243 and
depacketizing the data by use of the depacket module 239, as
disclosed herein.

FIG. 12 is a flow diagram of another embodiment of a
method 1200 for adaptive request scheduling. Step 1210 may
comprise buffering storage requests within a request buffer
136 of the storage module 130. The requests may be ordered
within the buffer 136.

Step 1220 may comprise determining storage location(s)
corresponding to the requests within the array 115, as dis-
closed above.

Step 1222 may comprise identifying storage requests that
can be executed concurrently (e.g., do not conflict). As dis-
closed above, a storage request conflict refers to storage
requests that cannot be performed concurrently within the
same bank 119 and/or array 115. A storage request conflict
may result from data structures associated with the requests

10

15

20

25

30

35

40

45

50

55

60

65

48

overlapping within the array 115, such that the storage
requests pertain to data stored within one or more of the same
columns 118 within the array 115. Storage requests that can
be executed concurrently may refer to storage requests that
pertain to data stored on different independent columns 118
of'the array 115.

Step 1224 may comprise scheduling and/or combining the
requests in accordance with the concurrencies and/or con-
flicts identified at step 1222. Step 1224 may comprise com-
bining requests that can be performed concurrently (e.g., do
not conflict). Combining requests may comprise reordering
requests within the buffer (e.g., changing the order of the
requests within the buffer 136), as disclosed above, in order to
combine concurrent requests and/or avoid request conflicts.
Accordingly, step 1224 may comprise determining that the
scheduled storage requests and/or storage request combina-
tions do not create data hazards, such as read-before-write
hazards, write-before-read hazards, or the like. In some
embodiments, step 1224 may be limited to combining
requests without changing request ordering, to ensure that
data hazards do not occur.

Step 1230 may comprise performing the scheduled
requests, which may comprise performing one or more com-
bined read operations, as disclosed herein. Step 1240 may
comprise reconstructing data of the requests by use of a read
module 241, adaptive read module 247, and so on, as dis-
closed herein.

FIG. 13 is a flow diagram of one embodiment of a method
1300 for adaptive data reconstruction. Step 1320 may com-
prise detecting an uncorrectable error in an ECC codeword.
Step 1320 may comprise detecting the error by use of an ECC
read module 245 of the read module 241. Step 1320 may
further comprise issuing an interrupt to a data recovery mod-
ule 170, as disclosed herein. In some embodiments, step 1320
further comprises determining the source of the uncorrectable
error, which may include identifying the column 118 (e.g.,
particular solid-state storage element 116A-Y) from which
the uncorrectable data was read. Determining the source of
the error may comprise referencing storage metadata 135,
such as the logical-to-physical translation between the data
and physical storage location. Alternatively, identifying the
source of the error may comprise iterative parity substitution,
as disclosed above.

Step 1330 may comprise performing a read operation to
read ECC codewords within the same vertical stripe as the
uncorrectable error, as disclosed above in conjunction with
FIG. 8. Alternatively, step 1330 may comprise performing a
read operation to read ECC codewords within other columns
118 of a vertical data configuration and/or within other chan-
nels of a hybrid, independent channel configuration. Step
1330 may further comprise reading parity data corresponding
to the vertical stripe, vertical, and/or hybrid, independent
channel configuration, as disclosed herein.

Step 1340 may comprise correcting ECC codewords in the
vertical stripe and/or other columns 118. Correcting the ECC
codewords may comprise processing the ECC codewords
using the ECC read module 245 and/or relational verification
module 645, as disclosed above. In some embodiments, step
1340 may be omitted, and the reconstruction step 1350 may
proceed without first decoding and/or correcting the ECC
codewords of the other columns 118.

Step 1350 may comprise reconstructing the uncorrectable
data by use of the corrected ECC codewords and parity data.
Step 1350 may comprise a byte-wise parity substitution
operation between the corrected ECC codewords and the
parity data. In hybrid, independent channel configurations,
step 1350 may further comprise determining the source of the

US 9,116,823 B2

49

uncorrectable error using iterative parity substitution within
the independent channel comprising the uncorrectable error.
In a two-channel configuration, iterative parity substitution
may comprise determining which of the two channels is the
source of the error. Other hybrid, independent channel con-
figurations may involve additional iterations, in accordance
with the width of the channels.

Step 1350 may further comprise reconstructing the data by,
inter alia, decoding the ECC codewords, including the recon-
structed ECC codewords, dewhitening, and depacketizing the
data, as disclosed above.

FIG. 14 is a flow diagram of one embodiment of a method
1400 for determining an adaptive storage configuration. Step
1420 may comprise acquiring profiling data 1420. Step 1420
may comprise accessing profiling data generated by the stor-
age module 130; stored, in a log storage format, on the solid-
state storage medium 110; and/or the like. The profiling data
may include an ordered history of storage operations and/or
requests received at the storage module 130.

Step 1430 may comprise determining performance metrics
of one of more adaptive data storage configurations. Step
1430 may comprise replaying and/or simulating the history of
storage requests in one or more different adaptive storage
configurations, which may include, but are not limited to, a
horizontal configuration; a vertical configuration; a hybrid,
independent channel configuration; a vertical stripe configu-
ration (of various vertical stripe depths); and/or the like. Step
1430 may comprise simulating storage operations under the
different adaptive data configurations, which may include
determining the contents of various portions of the solid-state
storage array 115 under the different adaptive data configu-
rations, scheduling read operations according to the adaptive
layout (using the adaptive schedule module 114), and/or the
like. The performance metrics may be based on one or more
ofadesired IOPS metric, aread time T, a stream time T's, and
so on, as disclosed above.

Step 1440 may comprise determining an adaptive storage
configuration. Step 1440 may comprise determining an opti-
mal adaptive storage configuration based on the performance
metrics and/or one or more objective functions. The determi-
nation of step 1440 may include various metrics and/or con-
siderations, including the performance metrics calculated at
step 1430, data reconstruction characteristics of various data
layout configurations, and so on. Step 1440 may further com-
prise providing an indication of the determined storage con-
figuration (to a user, administrator, or other entity), automati-
cally configuring the adaptive storage module 113 to operate
in accordance with the determined adaptive storage configu-
ration, and/or the like.

FIG. 15 is a flow diagram of one embodiment of a method
1500 for adaptive data storage using ECC codeword symbols.
Step 1530 may comprise generating ECC codeword symbols
630 in response to receiving data for storage on the solid-state
storage array 115. Step 1530 may comprise compressing,
packetizing, whitening, and/or encrypting data of the request,
as disclosed herein. Step 1530 may comprise encoding the
processed data into a plurality of ECC codeword symbols 630
using an ECC symbol generator module 686. The ECC sym-
bol generator module 686 may be configured to generate N+S
bytes of ECC codeword symbol data in response to N bytes of
processed data. The ECC codeword symbols 630 may be
configured for storage within respective columns 118 of the
array 115 (e.g., respective solid-state storage elements 116 A-
Y). The ECC codeword symbols may be a single byte or
multiple bytes. The ECC codeword symbols 630 generated at
step 1530 may, therefore, be sized in accordance with the
configuration solid-state storage array 115, a configuration of

20

25

35

40

45

50

the bus 127 (e.g., width of the bus 127), adaptive data layout
configuration of the adaptive write module 240, and/or the
like. In some embodiments, step 1530 may further comprise
marking the ECC codewords with relational information, as
disclosed above.

Step 1540 may comprise storing the ECC codeword sym-
bols 630 generated at step 1530 within respective columns
118 of the array 115. Step 1540 may comprise arranging the
ECC codeword symbols 630 (buffering the symbols) such
that the ECC codeword symbols 630 are streamed to program
buffers of respective solid-state storage elements 116A-Y
within the array 115. Step 1540 may comprise buffering
multi-byte ECC codeword symbols 630 to store bytes of the
same ECC codeword symbols 630 within the same column
118, as disclosed above in conjunction with FIG. 6N.

Step 1540 may further comprising storing ECC codeword
symbols 630 according to an adaptive data layout and/or
configuration within the array 115. The adaptive data layout
of step 1540 may comprise one or more of a horizontal data
configuration, a vertical data configuration, a hybrid channel
configuration, and/or a vertical stripe configuration, as dis-
closed above. In a horizontal configuration, step 1540 may
comprise streaming the ECC codeword symbols 630 of the
data packet 610 horizontally within a 24-column channel of
the array 115 (as depicted in FIGS. 6A-B and 6M-N). In a
vertical configuration, step 1540 may comprise streaming the
ECC codeword symbols 630 of the data packet 610 vertically
within a single column of the array (as depicted in FIGS.
6C-D), while ECC codeword symbols 630 of other packets
(and/or other data segments) are streamed to other columns
118 of the array 115. In a hybrid, independent channel con-
figuration, step 1540 may comprise streaming the ECC code-
word symbols 630 of the data packet 610 to a hybrid, inde-
pendent channel comprising a subset of one or more columns
118 of the array 115 (as depicted in FIGS. 6E-F), while ECC
codeword symbols 630 of other packets (and/or other data
segments) are streamed to other independent channels, com-
prising other subsets of columns 118, within the array 115. In
a vertical stripe configuration, step 1540 may comprise
streaming the ECC codeword symbols 630 into a vertical
stripe of a predetermined depth within one or more of the
columns 118 of the array 115, as depicted in FIGS. 6G-I.

In some embodiments, step 1540 further comprises man-
aging OOS conditions within the array 115 by, inter alia,
streaming padding data to one or more columns 118 that are
out-of-service (as indicated by the storage metadata 135).

In some embodiments, step 1540 further comprises gener-
ating parity data corresponding to one or more data rows 667
comprising the ECC codeword symbols. The data rows 667
may comprise ECC codeword symbols 630 of the data packet
610 and/or ECC codeword symbols 630 of one or more other
packets and/or data segments in accordance with the adaptive
data configuration implemented by the adaptive write module
248.

Step 1540 may further comprise filling program buffers of
the solid-state storage elements 116 A-Y in the array 115 and
issuing one or more program commands to the array 115
configured to program the contents of the program buffers to
the solid-state storage elements 116 A-Y.

FIG. 16 is a flow diagram of a method 1600 for data
recovery in an adaptive storage environment. Step 1640 may
comprise validating ECC codeword symbols 630 pertaining
to a data segment stored on the solid-state storage array 115.
Step 1640 may comprise reading and/or accessing the ECC
codeword symbols 630 in response to one or more data access
requests (e.g., read requests, read modify requests, and/or the
like). The requests may pertain to data stored within ECC
codeword symbols 630 on the solid-state storage array 115.

US 9,116,823 B2

51

The requests may reference the data by use of one or more
logical identifiers and/or logical addresses. Accordingly, step
1640 may comprise determining a storage location of the
ECC codeword symbols 630 comprising data of the request
within the array 115 by use of the logical-to-physical trans-
lation layer 132 and/or storage metadata 135, as disclosed
above. Step 1640 may further comprise scheduling and/or
issuing one or more request requests to the array 115, as
disclosed above.

Step 1640 may further comprise reading ECC codeword
symbols 630 in accordance with an adaptive data layout. As
disclosed above, ECC codeword symbols 630 of the
requested data may be stored in one or more of a horizontal
data configuration; a vertical data configuration; a hybrid,
independent channel configuration; a vertical stripe configu-
ration; and/or the like. In a horizontal, independent channel,
and/or some vertical stripe configurations, step 1640 may
comprise reading ECC codeword symbols 630 from two or
more columns 118 of the array 115. In a vertical configura-
tion, and/or some vertical stripe configurations, step 1640
may comprise reading ECC codeword symbols 630 from a
single column 118 of the array 115. However, and notwith-
standing the data arrangement and/or number of columns 118
used to read ECC codeword symbols 630 comprising the
requested data, each ECC codeword symbol 630 read from
the array 115 may be stored within a respective one of the
columns 118 (e.g., the data of each ECC codeword symbol
630 may be stored within a respective one of the solid-state
storage elements 116A-Y).

In some embodiments, step 1640 further comprises buft-
ering the ECC symbol data to reconstruct ECC codeword
symbols 630 (e.g., as depicted in FIG. 6N). Step 1640 may
further comprise reordering the ECC codeword symbols 630
in accordance with an order and/or sequence of the requested
data, as disclosed above in conjunction with FIG. 6L. Step
1640 may further comprise validating relational information
of the ECC codeword symbols 630 by use of a relational
verification module 645, as disclosed above.

Validating the ECC codeword symbols 630 at step 1640
may comprise detecting and/or correcting errors in the ECC
codeword symbols 630 using an ECC algorithm (and/or by
use of the ECC read module 245 and/or ECC symbol valida-
tion module 687).

Step 1650 may comprise identifying an ECC codeword
symbol 630 that is unavailable due to, inter alia, an uncorrect-
able error in the ECC codeword symbol 630, read failure,
hardware fault, and/or the like. The flow may continue at step
1652 in response to detecting the unavailable ECC codeword
symbol; otherwise, the flow may continue at step 1660.

Step 1652 may comprise reconstructing the unavailable
ECC codeword symbol 630. Step 1652 may comprise one or
more byte-wise parity substitution operations, which may
include, but are not limited to, accessing one or more data
rows 647 comprising the unavailable ECC codeword symbol
630, wherein each data row 647 comprises one or more other
ECC codeword symbols 630, correcting the other ECC code-
word symbols 630 within the one or more data rows 647
(decoding and/or validating the other ECC codeword sym-
bols 630), and using the corrected ECC codeword symbols
630 and/or corresponding parity data to reconstruct the
unavailable ECC codeword symbol 630 (e.g., as illustrated in
FIGS. 60-P). Alternatively, the parity substitution operation
may omit the step of correcting the other ECC codeword
symbols 630. The unavailable ECC codeword symbol 630
may be reconstructed by use of the other ECC codeword
symbols 630 as read from the array 115. In some embodi-

10

15

20

25

30

35

40

45

50

55

60

65

52
ments, step 1652 may comprise reconstructing the unavail-
able ECC codeword symbol 630 using the other ECC code-
word symbols, and without reference to dedicated parity data
(e.g., using data reconstruction capabilities of the ECC
encoding), as disclosed above.

Step 1660 may comprise reconstructing the requested data
from the ECC codeword symbols 630, which may include
one or more reconstructed ECC codeword symbols 630
acquired at step 1652. Step 1660 may further comprise pro-
viding the requested data to a storage client 104, which may
include dewhitening, depacketizing, and/or decrypting the
data, as disclosed above.

FIG. 17 is a flow diagram of another embodiment of a
method 1700 data recovery in an adaptive storage environ-
ment. Step 1720 may comprise receiving a request for data
stored within the solid-state storage array 115. The requested
data may be embodied as a plurality of ECC codeword sym-
bols 630, each of which may be stored within one of the
solid-state storage elements 116A-Y comprising the array
115, as disclosed above.

Steps 1740 may comprise validating the ECC codeword
symbols 630 comprising the requested data, as disclosed
above. Step 1740 may further comprise identifying unavail-
able ECC codeword symbols 630, determining the source of
the error(s) within the unavailable ECC codeword symbols
630 (e.g., identifying the column(s) 118 from which the
unavailable ECC codeword symbols 630 were read), and/or
reconstructing the unavailable ECC codeword symbols 630,
as disclosed herein.

Step 1745 may comprise determining whether any of the
columns 118 of the array 115 (e.g., solid-state storage ele-
ments 116 A-Y and/or portions thereof) should be taken OOS.
As disclosed herein, a solid-state storage element 116A-Y
may be taken OOS for any number of reasons including, but
not limited to, excessive wear, error rate, read and/or program
failures, or the like. Step 1745 may comprise identifying
solid-state storage elements 116A-Y associated with ECC
codeword symbols 116 that were unavailable (if any). As
disclosed herein, each ECC codeword symbol 630 may be
associated with a respective column 118 (solid-state storage
element 116A-Y); as such, the identification of step 1745 may
be determined directly and without further parity compari-
sons (e.g., as in the case of ECC codewords distributed across
multiple solid-state storage elements).

Columns 118 comprising unavailable ECC codeword sym-
bols 630 may be selected as candidates for retirement. In
some embodiments, a section of a solid-state storage element
116 A-Y may be taken OOS in response to identifying more
than a threshold number of unavailable ECC codeword sym-
bols 630, in response to identifying more than a threshold
number of correctable errors, in response to reaching a thresh-
old wear level, or the like. The threshold(s) of step 1745 may
be selected according to testing and experience. If one or
more solid-state storage elements 116 A-Y are identified at
step 1745, the flow continues to step 1755; otherwise, the flow
continues at step 1760.

Step 1755 may comprise indicating that a column 118
(and/or portion thereof) is OOS (retired). Step 1755 may
comprise updating storage metadata 135 (e.g., OOS meta-
data) to identify the portions of the array 115 that are retired.
Step 1755 may further comprise identifying storage resources
to replace the OOS section(s), configuring the adaptive write
module 248 to stream padding data to the OOS section(s),
configuring the adaptive read module 247 to strip data corre-
sponding to the OOS section(s), and so on.

Alternatively, in some embodiments, the identified
section(s) may remain in service, and step 1755 may com-

US 9,116,823 B2

53

prise modifying the ECC configuration of the adaptive stor-
age module 113 to accommodate increased error rates. The
modification may comprise configuring an ECC write mod-
ule 246 and/or ECC read module 245 to generate larger ECC
codewords, comprising a larger ratio and/or percentage of
ECC information to data.

The above description provides numerous specific details
for a thorough understanding of the embodiments described
herein. However, those of skill in the art will recognize that
one or more of the specific details may be omitted, or other
methods, components, or materials may be used. In some
cases, operations are not shown or described in detail.

Furthermore, the described features, operations, or charac-
teristics may be combined in any suitable manner in one or
more embodiments. It will also be readily understood that the
order of the steps or actions of the methods described in
connection with the embodiments disclosed may be changed
as would be apparent to those skilled in the art. Thus, any
order in the drawings or Detailed Description is for illustra-
tive purposes only and is not meant to imply a required order,
unless specified to require an order.

Embodiments may include various steps, which may be
embodied in machine-executable instructions to be executed
by a general-purpose or special-purpose computer (or other
electronic device). Alternatively, the steps may be performed
by hardware components that include specific logic for per-
forming the steps, or by a combination of hardware, software,
and/or firmware.

Embodiments may also be provided as a computer pro-
gram product including a computer-readable storage medium
having stored instructions thereon that may be used to pro-
gram a computer (or other electronic device) to perform pro-
cesses described herein. The computer-readable storage
medium may include, but is not limited to, hard drives, floppy
diskettes, optical disks, CD-ROMs, DVD-ROMs, ROMs,
RAMs, EPROMs, EEPROMs, magnetic or optical cards,
solid-state memory devices, or other types of media/machine-
readable media suitable for storing electronic instructions.

As used herein, a software module or component may
include any type of computer instructions or computer
executable code located within a memory device and/or com-
puter-readable storage medium. A software module may, for
instance, comprise one or more physical or logical blocks of
computer instructions, which may be organized as a routine,
program, object, component, data structure, etc., that perform
one or more tasks or implement particular abstract data types.

In certain embodiments, a particular software module may
comprise disparate instructions stored in different locations
of'a memory device, which together implement the described
functionality of the module. Indeed, a module may comprise
a single instruction or many instructions, and may be distrib-
uted over several different code segments, among different
programs, and across several memory devices. Some embodi-
ments may be practiced in a distributed computing environ-
ment where tasks are performed by a remote processing
device linked through a communications network. In a dis-
tributed computing environment, software modules may be
located in local and/or remote memory storage devices. In
addition, data being tied or rendered together in a database
record may be resident in the same memory device, or across
several memory devices, and may be linked together in fields
of a record in a database across a network.

It will be understood by those having skill in the art that
many changes may be made to the details of the above-
described embodiments without departing from the underly-
ing principles of the disclosure.

40

45

50

54

We claim:

1. An apparatus, comprising:

an error-correcting code (ECC) write module configured to
generate a plurality of ECC codeword symbols compris-
ing data of a storage request;

wherein each of the ECC codeword symbols is configured
for storage within one or more respective columns of a
solid-state storage array, each column comprising one or
more solid-state storage elements; and

an adaptive write module configured to stream each of the
ECC codeword symbols comprising the data of the stor-
age request to at least one respective column of a set of
two or more columns of the solid-state storage array,

wherein the ECC write module is configured to generate
multi-byte ECC codeword symbols, wherein the adap-
tive write module is configured to stream portions of the
multi-byte ECC codeword symbols to respective solid-
state storage elements in each of a plurality of stream
cycles, and wherein the adaptive write module is further
configured to stream the portions of the multi-byte ECC
codeword symbols such that the portions of each multi-
byte ECC codeword symbol are streamed to a respective
one of the solid-state storage elements.

2. The apparatus of claim 1, wherein the adaptive write
module is configured to stream the ECC codeword symbols to
the solid-state storage array in a plurality of data rows, each
data row comprising data for storage within a respective one
of the columns, the apparatus further comprising a parity
module configured to generate parity data corresponding to
each of the data rows.

3. The apparatus of claim 1, wherein the adaptive write
module is configured to stream the ECC codeword symbols
comprising the data of the storage request to a first indepen-
dent channel comprising a subset of the columns of the solid-
state storage array with ECC codeword symbols comprising
data of another storage request to a different independent
channel comprising a different subset of the columns of the
solid-state storage array.

4. The apparatus of claim 1, further comprising:

a read module configured to read a plurality of ECC code-
word symbols stored within a plurality of different solid-
state storage elements, wherein each ECC codeword
symbol is read from a respective one of the solid-state
storage elements; and

a data recovery module configured to reconstruct an
unavailable ECC codeword symbol read from a first one
of the solid-state storage elements using other ECC
codeword symbols stored on others of the solid-state
storage elements.

5. The apparatus of claim 4, wherein the data recovery
module is configured to reconstruct the unavailable ECC
codeword symbol by use of parity data corresponding to the
unavailable codeword and other ECC codeword symbols.

6. The apparatus of claim 1, wherein the data of the storage
request comprises one of a data packet, a data segment, a
block, and a sector, and wherein the ECC write module is
configured to generate a plurality of ECC codeword symbols
comprising the data, and wherein the adaptive write module is
configured to distribute the ECC codeword symbols between
a plurality of different solid-state storage elements.

7. The apparatus of claim 1, wherein the adaptive write
module is configured to stream a respective ECC codeword
symbol to a plurality of solid-state storage elements in each of
aplurality of stream cycles, the apparatus further comprising
a parity module configured to generate parity data corre-
sponding to the ECC symbols being streamed to the plurality
of solid-state storage elements in the stream cycle, wherein

US 9,116,823 B2

55

the adaptive write module is configured to stream the parity
data with the ECC codeword symbols corresponding to the
parity data.

8. The apparatus of claim 1, wherein the ECC write module
is configured to generate one-byte ECC codeword symbols,
and wherein the adaptive write module is configured to
stream a respective one of the ECC codeword symbols to each
of a plurality of solid-state storage elements in each of a
plurality of bus cycles.

9. A computer program product comprising a non-transi-
tory computer readable storage medium storing computer
usable program code executable to perform operations, the
operations comprising:

generating multi-byte error-correcting code (ECC) code-

word symbols;
streaming portions of the multi-byte ECC codeword sym-
bols to respective solid-state storage elements in each of
a plurality of stream cycles, said streaming comprising
streaming each multi-byte ECC codeword symbol to a
respective one of the solid-state storage elements;

determining a storage location of a plurality of error-cor-
recting code (ECC) codeword symbols comprising
requested data;
identifying ECC codeword symbols comprising data of
one or more other requests stored within different
groups of the solid-state storage elements; and

scheduling a read operation configured to read the ECC
codeword symbols of the requested data and ECC code-
words comprising data of the one or more other requests
in a single read operation on the solid-state storage ele-
ments.

10. The computer program product of claim 9, the opera-
tions further comprising verifying that the ECC codeword
symbols comprise the requested data by verifying a mark on
the ECC codeword symbols corresponding to relational infor-
mation pertaining to the requested data.

11. The computer program product of claim 9, the opera-
tions further comprising:

queuing storage requests in a request buffer; and

determining a storage location of ECC codewords of one or

more other requests in the request buffer.

12. The computer program product of claim 11, wherein
scheduling the read operation comprises reordering one or
more storage requests in the request buffer.

20

25

40

56

13. The computer program product of claim 11, wherein
scheduling the read operation comprises indicating different
addressing information for two or more of the solid-state
storage elements.
14. The computer program product of claim 13, further
comprising reordering contents of a read buffer to reconstruct
a data packet stored within the plurality of ECC codeword
symbols comprising the requested data.
15. A system, comprising:
means for generating a plurality of sets of error-correcting
code (ECC) symbols, wherein each set of ECC symbols
comprises data of different respective storage requests;

means for arranging the sets of ECC symbols for storage
within different independent channels, each channel
comprising two or more solid-state storage elements;
and

means for storing the arranged sets of ECC symbols to the

different independent channels, comprising means for
storing each ECC symbol within a respective one of the
solid-state storage elements of a respective independent
channel,

wherein the means for generating is configured to generate

multi-byte ECC codeword symbols, wherein the means
for arranging is configured to stream portions of the
multi-byte ECC codeword symbols to respective solid-
state storage elements in each of a plurality of stream
cycles, and wherein the means for arranging is further
configured to stream the portions of the multi-byte ECC
codeword symbols such that the portions of each multi-
byte ECC codeword symbol are streamed to a respective
one of the solid-state storage elements.

16. The system of claim 15, further comprising:

means for identifying an independent channel comprising

a set of ECC symbols corresponding to requested data;
and

means for extracting the requested data from the set of ECC

symbols read from the identified independent channel.

17. The system of claim 15, further comprising means for
combining two or more read requests pertaining to ECC
symbols stored within different independent channels.

18. The system of claim 15, further comprising means for
reconstructing an uncorrectable ECC symbol read from one
of the solid-state storage elements by use of a plurality of
ECC symbols stored within others of the solid-state storage
elements.

